首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
高压涡轮全环非定常流动数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
为了进一步准确地掌握涡轮内部复杂流动特征,采用全环非定常数值模拟方法研究了某型高压涡轮内部非定常流动,重点分析了上游导叶尾迹和激波在动叶流动中的非定常作用机制,探讨了引起动叶通道内及叶片表面压力分布周期性变化的非定常扰动。数值结果表明:与尾迹作用相比,由导叶激波引起的非定常效应更为明显,尾迹引起的非定常扰动在动叶0.5倍轴向弦长位置下游较为突出。在动叶流场中及叶片表面上的静压变化显示,在动叶通道内还存在低频扰动,对局部流场的非定常扰动明显。最后指出,在非定常计算时采用区域缩放法对流场中非定常扰动的预测存在一定误差。  相似文献   

2.
高负荷涡轮端区非定常流动相互作用研究   总被引:3,自引:0,他引:3  
綦蕾  邹正平  刘火星  李维 《航空学报》2009,30(4):584-596
采用三维黏性非定常数值模拟方法研究了某型高压涡轮端区非定常流动相互作用,着重研究了上游静子尾迹与转子二次流的非定常作用机制,同时还分析了负荷分布、激波等对端区非定常流动的影响。结果表明,静子尾迹的非定常作用一定程度减小了转子轮毂二次流的径向涡量;尾迹对流向涡量的影响取决于尾迹沿叶高的分布,当吸力面一侧的尾迹具有与二次流方向相反的流向涡量时,二次流的流向涡量减小;非定常效应还使得转子叶片根部负荷略为减小,也一定程度上抑制了转子轮毂二次流的发展。此外,受静子尾缘激波的影响,转子叶片表面负荷分布发生明显的周期性变化,导致叶片表面承受较强的非定常力,在涡轮设计中必须考虑。另外,通过计算涡轮级中的熵增和熵产,定量地分析了端区非定常相互作用产生的损失,并得到了一些有意义的结论。  相似文献   

3.
采用三维粘性非定常数值模拟方法,对某汽轮机设计状态末级非定常流动进行了模拟,并对设计状态下各因素引起末级动叶表面产生非定常力的大小和作用机理进行了分析。结果表明,本文中的汽轮机末级在设计条件下,上游静叶尾缘激波和位势场对下游转子的影响比尾迹作用的影响更大,静叶尾缘激波和位势场导致下游转子叶片表面非定常力大小呈周期性变化;此外上游静子尾迹以及动叶尾缘出口膨胀波等也是产生转子叶片表面非定常力的因素。   相似文献   

4.
动/动干涉效应对叶片非定常负荷的影响   总被引:3,自引:0,他引:3  
采用非定常数值模拟的方法研究了设计工况下对转压气机内部的非定常流动机理,着重分析对转压气机内部两排转子之间动/动干涉效应对叶片非定常负荷的影响。研究表明:对转环境下,下游转子的势流干扰造成上游转子压力面的强非定常性,而在上游转子尾迹和势流干扰的影响下,下游转子叶片前缘非定常性极强,相比叶片其他区域非定常强度不是很高,并且从频谱分析的角度证实了两排转子之间的相互影响,反向旋转造成叶片表面压力脉动频率加倍;分析两排转子叶片表面的气动力可知,下游转子的势流干扰对上游转子造成的影响略微强于上游尾迹和势流对下游转子的影响,并且两排转子之间的相对位置对叶片所受非定常气动力存在一定的影响。  相似文献   

5.
上游尾迹与涡轮转子泄漏流相互作用数值模拟   总被引:7,自引:5,他引:2  
叶轮机内部流动本质上是周期性非定常的,研究涡轮转子叶尖区域的非定常相互作用机理,对提高小展弦比高负荷涡轮性能具有重要意义.利用数值模拟方法研究了上游静子尾迹与涡轮转子叶尖泄漏流的非定常相互作用,分析了定常结果、时间平均结果以及瞬时时刻结果的流动图画.结果表明:上游静子尾迹与涡轮转子尖区二次流的相互作用能明显影响泄漏涡和机匣通道涡的时空演化规律,从而改变转子尖区的损失分布.上游尾迹在转子通道中传播时,诱导泄漏涡和通道涡区域出现周期性的扰动涡对,扰动涡对沿着泄漏涡和通道涡的轨迹向下游运动,使得转子尖区二次流结构呈现周期性变化.   相似文献   

6.
为进一步减小涡轮过渡段流动损失,深入了解涡轮过渡段中的非定常损失机理,开展了大扩张角过渡段研究。在过渡段的非定常流动机理研究中,过渡段进口流场的最显著特点是:转子泄漏涡、通道涡和尾迹。采用数值方法对大扩张角涡轮过渡段进行3维非定常数值仿真。结果表明:支板尾缘部分的静压波动小于支板前缘部分的;高压涡轮静子尾迹被转子切割后进入转子通道中向下游传播并在过渡段内形成尾迹通道,尾迹在过渡段内的时空演化是过渡段内损失的主要来源;过渡段支板表面负荷分布发生明显的周期性变化,支板表面承受较强的非定常力,在过渡段设计中必须考虑。  相似文献   

7.
尾迹扫掠下超高负荷低压涡轮叶片附面层特性   总被引:2,自引:0,他引:2  
利用表面热膜测量上游尾迹周期性扫掠下某超高负荷低压涡轮叶片吸力面附面层的非定常流动特性.通过热膜测得的准壁面剪切力及其统计参数云图分析了尾迹与附面层的相互作用对分离、转捩及再附过程的影响.实验结果表明:对于低雷诺数Re超高负荷产生较大分离泡的情形,尾迹扫掠对涡轮叶片附面层的发展具有显著影响,能够有效地抑制附面层的流动分离.   相似文献   

8.
压气机叶片负荷的提高使得叶片表面边界层更容易分离,利用上游叶排产生的非定常尾迹能够抑制边界层分离.运动圆柱代替上游转子,在保证下游叶片进气速度大小及攻角不变的情况下,改变圆柱运动速度以获得上游尾迹与下游静叶吸力面不同的夹角,发现在低负荷小分离情况下静叶损失系数与上游尾迹入射角无关;高负荷大分离情况下静叶损失系数随上游尾迹入射角的增加而降低.分析尾迹作用下高负荷静叶通道内流场,当进入静叶通道的尾迹与叶片吸力面近似平行时,尾迹诱导边界层增厚.使得叶片表面分离泡随时间大幅值脉动,损失增加;当尾迹与叶片吸力面的角度逐渐垂直时,尾迹抑制了边界层分离,同时叶片表面分离泡位置近似不变,其原因是尾迹以负射流形式进入边界层内部,补充了边界层内部低能流体,使得损失减小.   相似文献   

9.
一种大负荷低压涡轮叶型的气动性能   总被引:2,自引:2,他引:0  
基于Lantry-Menter转捩模型,分别对Zweifel升力系数为1.2的一种大负荷低压涡轮叶型在定常来流不同湍流度、雷诺数条件下,上游非定常、周期性尾迹作用下的流动进行了数值模拟.计算结果表明,定常来流低雷诺数条件下,湍流度对该大负荷叶型的气动性能影响较大;上游非定常、周期性尾迹对叶型吸力面分离泡的抑制作用可进一步减小低雷诺数条件下的叶型损失.计算结果揭示了该大负荷叶型在低压涡轮内部真实流动环境中的表面流动及损失特征,对国内现行低压涡轮设计有着较好的启示.   相似文献   

10.
采用三维数值模拟方法对1+1/2对转涡轮进行了全环非定常计算,对比了定常结果与非定常时均结果的总体参数。在非定常流动中,分析了激波、尾迹、位势作用及泄漏流等因素对叶片表面负荷分布和局部区域流场的影响。结果表明:非定常效应对高压导叶流场影响很小;在激波、尾迹、位势作用等的共同影响下,高压动叶内流动呈现出较强的非定常性,二次流动增强;低压动叶方面,虽然与上游叶排轴向间距较大,但其流动非定常性依然显著,且受影响范围更广。  相似文献   

11.
跨声压气机动静干涉效应的数值研究   总被引:3,自引:3,他引:0  
采用数值方法对一轴流跨声压气机在设计点的非定常流场进行了模拟, 对级内动静干涉进行了深入分析, 研究了尾迹和位势作用等对动静叶表面气动负荷的影响.计算结果表明:在压气机中, 上游动叶的尾迹等对静叶通道内部流动, 叶片表面静压的波动, 以及边界层流动损失的发生、发展和输运产生明显的影响, 需要在设计中加以考虑.   相似文献   

12.
尾迹对压气机转子性能影响的非定常数值模拟   总被引:1,自引:0,他引:1  
采用三维粘性非定常数值模拟方法,研究了上游尾迹对轴流压气机转子性能及其尖部非定常流动的影响.结果表明,在一定情况下,上游静子尾迹与转子内部流动的非定常相互作用,有可能改善近失速点的气动性能,如转子压比和效率升高,工作范围增大.其原因主要为:上游静子尾迹使转子尖区一次泄漏涡强度减弱,减少了二次泄漏涡强度或抑制了二次泄漏涡的产生,最终导致尖区损失减少;此外,尾迹使尖区激波位置后移,改变了尖部弦向的负荷分布,最终导致压气机稳定工作范围增大.  相似文献   

13.
转子叶片表面非定常气动力的构成及叠加分析   总被引:1,自引:1,他引:0  
杜红军  李罡  胡骏 《航空动力学报》2009,24(9):2128-2132
数值模拟了一个带有导叶的单级低速压气机中转子叶片表面的非定常气动力.通过研究转子叶片根部、尖部前缘和尾缘局部位置的非定常气动力,阐明了由尾迹和势扰动两种非定常性诱发的气动力在转子叶片表面的叠加特性.结果表明,上游尾迹的影响波及整个转子叶片弦长范围,而下游静子叶片势扰动仅影响转子叶片尾缘附近的脉动压力,改变上、下游叶片的时序位置,当整个转子叶片表面脉动压力的幅值比最大值减小19.4%时,其叶尖前缘脉动压力的幅值仅比最大值减小9.4%.   相似文献   

14.
《中国航空学报》2020,33(3):879-892
Detailed experimental measurements were conducted to study the interactions between incoming wakes and endwall secondary flow in a high-lift Low-Pressure Turbine (LPT) cascade. All of the measurements were conducted in both the presence and absence of incoming wakes, and numerical analysis was performed to elucidate the flow mechanism. With increasing Reynolds number, the influence of the incoming wakes on suppressing the secondary flow gradually increased owing to the greater influence of incoming wakes on reducing the negative incidence angle at higher Reynolds numbers, leading to a lower blade loading near the leading edge and suppression of the Pressure Side (PS) leg of the horseshoe vortex. However, the effect of unsteady wakes on suppressing the profile losses gradually became weaker owing to the reduced size of the Suction Side (SS) separation bubble and increased mixing loss in the free-flow region at high Reynolds numbers. Incoming wakes clearly improved the aerodynamic performance of the low-pressure turbine cascade at low Reynolds numbers of 25,000 and 50,000. In contrast, at the high Reynolds number of 100,000, the profile loss at the midspan and mass-averaged total losses downstream of the cascade were higher in the presence of wakes than in the absence of wakes, and the unsteady wakes exerted a negative influence on the aerodynamic performance of the LPT cascade.  相似文献   

15.
上游尾迹与涡轮叶栅通道涡相互作用研究   总被引:2,自引:1,他引:1  
采用三维粘性非定常数值模拟方法研究了上游尾迹与涡轮叶栅通道涡的相互作用,对定常、非定常时均以及瞬时时刻流动机理进行了分析.结果表明:上游尾迹的非定常作用一方面增强了叶栅通道涡的径向涡,使得流动损失增大;另一方面能够一定程度上抑制通道涡中流向涡的发展,对控制损失起到正面作用,端区的综合非定常效应取决于两者之间的平衡.在本文计算条件下,上述两方面综合影响使得通道涡的非定常损失增大.   相似文献   

16.
The fan of a high bypass ratio turbo fan engine produces up to 80% of the total thrust of the engine. It is the low-pressure (LP) turbine that drives the fan and, on some engines, a number of compressor stages. The unsteady aerodynamics of the LP turbine, and in particular, the role of unsteady flow in laminar–turbulent transition, is the subject of this paper.The flow in turbomachines is unsteady due to the relative motion of the rows of blades. In the LP turbine, the wakes from the upstream blade rows provide the dominant source of unsteadiness. Because much of the blade-surface boundary-layer flow is laminar, one of the most important consequences of this unsteadiness is the interaction of the wakes with the suction-side boundary layer of a downstream blade. This is important because the blade suction—side boundary layers are responsible for most of the loss of efficiency and because the combined effects of random (wake turbulence) and periodic disturbances (wake velocity defect and pressure fields) cause the otherwise laminar boundary layer to undergo transition and eventually become turbulent.This paper discusses the development of unsteady flows in LP turbines and the process of wake-induced boundary-layer transition in low-pressure turbines and the loss generation that results. Particular emphasis will be placed on unsteady separating flows and how the effects of wakes may be exploited to control loss generation in the laminar–turbulent transition processes. This control has allowed the successful development of the latest generation of ultra-high-lift LP turbines. More recent developments, which harness the effects of surface roughness in conjunction with the wakes, are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号