首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
以碳酸锶、氧化铝、稀土(氧化铕和氧化镓)、硼酸为原料,用高温烧结法合成了稀土铝酸锶光致储能粉,研究了烧结原理、原材料性能及工艺参数对其性能的影响。选用高透明度丙稀酸树脂、稀土铝酸锶光致储能粉、荧光颜料及助剂等,研制出一种具有荧光和发光性能的复合涂料,测定了该涂料的有关性能。  相似文献   

2.
本文简要概述了目前国外高性能树脂基体材料的发展现状,通过介绍航天航空领域中目前最有发展前途的新型热塑性树脂基体性能特点、工艺方法及其开发应用,以及新型改性热固性树脂及其用于纤维缠绕工艺的研究,对热塑性树脂用作纤维缠绕复合材料发动机壳体基体材料的可行性进行了初步探讨。  相似文献   

3.
盛磊  李玉英 《宇航材料工艺》1993,23(4):24-27,74
本文简要介绍了热塑性树脂基复合材料的基本特点、主要原材料、热成型工艺与设备,着重介绍长纤维增强热塑性树脂基复合材料的热成型工艺,并与热固性树脂基复合材料对比,分析其优缺点及存在的问题,同时展望其应用与发展前景。  相似文献   

4.
改性双马来酰亚胺树脂在RFI工艺中的应用   总被引:1,自引:0,他引:1  
通过在改性双马来酰亚胺5405树脂中加入耐高温热塑性塑料聚芳醚砜(PES),获得了满足RFI工艺要求、具有良好成膜性的5405A树脂膜.该树脂膜在室温不粘手,能够任意弯曲.在熔渗温度(130℃)下,低黏度(≤500mPa·s)的保持时间长达70min.在宦温存放3个月后,不溶物含量由1.25%变化为2.02%,DSC曲线表明反应的峰始温度和峰顶温度与放置前无明显差异,130℃凝胶时间由137min变化为135min.参照5405树脂的固化工艺,制备了5405A树脂浇铸体和单向碳纤维帘子布(G0827)增强5405A复合材料,并对性能进行了评价.对比5405和5405A树脂树脂浇铸体的性能表明,5405A力学性能稍有降低,但韧性得到了明显提高.  相似文献   

5.
硼酸铝晶须及其在聚合物基复合材料中的应用   总被引:5,自引:0,他引:5       下载免费PDF全文
主要介绍了硼酸铝晶须的特性、制备方法及其在热固性树脂与热塑性树脂和医学中的应用研究概况,以及硼酸铝晶须的表面处理对复事材料性能的影响,并提出晶须的表面改性、材料的加工工艺及降低制造成本是今后发展的主要方向。  相似文献   

6.
连续玻璃纤维增强热塑性复合材料工艺及力学性能的研究   总被引:7,自引:0,他引:7  
选择三种国产高性能热塑性树脂 ,聚醚砜、酞侧基聚醚砜、酞侧基聚醚酮和高强玻璃纤维粗纱 ,采用连续预浸渍技术和高温、高压成型工艺 ,确定出合理的工艺参数 ,分别制备了树脂基体试件和单向板试件 ,并对其进行了相关力学性能试验研究。通过扫描电镜对单向板试件断口进行了分析  相似文献   

7.
目前,以各种树脂与纤维增强的复合材料受到了人们的重视,并且已经在航空及宇航工业上得到了广泛的应用。在复合材料的工艺过程中,由于树脂的固化速度及固化度的不同,会影响到复合材料的一些性能。酚醛树脂的固化过程直接与树脂的分子结构和不同的固化条件有关。Resole型酚醛树脂是由苯酚与甲醛在碱性催化剂作用下制得。由于苯酚含有三个活性位置,除了有一元、二元及三元酚醇生成  相似文献   

8.
采用经过改性的低成本树脂膜熔渗工艺(RFI)用5228A高温环氧树脂体系,以国产纤维CCF300碳纤维为增强材料,对改性后的RFI专用5228A环氧树脂体系的RFI工艺参数进行研究。对5228A树脂体系RFI成型的全部过程中渗透浸渍纤维和树脂固化成型两个基本工艺的树脂体系的黏温性能、浸渍压力、CCF300纤维预制体的压缩特性以及固化动力学和固化工艺参数等因素的研究表明:改性后的RFI专用5228A环氧树脂体系能够完全满足RFI工艺的要求。RFI专用CCF300/5228A碳纤维复合材料的最佳浸渍工艺为(125±3)℃,(0.1±0.02)MPa下,保温90min;树脂固化成型的最佳工艺参数为:加压至(0.5±0.02)MPa,然后升温至(190±3)℃,恒温90min。整个工艺过程中的升温速率保持在1~1.5℃/min之间。  相似文献   

9.
树脂基复合材料轻质结构具有轻质、高性能等优点,广泛应用于航天航空、高速列车和船舶等领域。通过对传统树脂基复合材料轻质结构制造工艺的综述分析,发现传统制造工艺具有过程复杂、周期长和生产成本高等缺陷,限制了树脂基复合材料轻质结构的发展。3D打印是一种先进的零件成形工艺,可实现复杂结构零件的快速制造,为高性能复合材料轻质结构的一体化制造提供了可能。介绍了树脂基复合材料轻质结构3D打印的研究进展,提出了基于连续纤维增强热塑性复合材料3D打印的高性能复合材料轻质结构的一体化制造工艺,并对其性能开展了初步研究。  相似文献   

10.
可熔体加工热塑性聚酰亚胺研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
从发展航空航天、微电子、汽车及电器等高技术领域先进材料的角度,阐述了可熔体加工热塑性聚酰亚胺的发展现状和最新进展;报告了热塑性聚酰亚胺的挤出成型、注射成型、纺丝、涂覆等工艺;讨论了热塑性聚酰亚胺的分子结构对聚酰亚胺热性能的影响;介绍了几种最新热塑性聚酰亚胺的特点和典型应用实例;指出开发新型热塑性聚酰亚胺应综合考虑可加工性、耐热性、成本以及原料来源。  相似文献   

11.
双马来酰亚胺改性酚醛型环氧树脂性能研究   总被引:1,自引:0,他引:1  
采用双马来酰亚胺(BMI)改性酚醛型环氧树脂(F-51)/芳香胺(DAMI)固化体系。采用DSC,TGA和TMA等仪器考察BMI含量对改性体系的固化行为、力学性能及热稳定性的影响,并用扫描电镜(SEM)研究材料断面的形态结构。结果表明,随着体系中BMI比例的增加,体系固化放热峰向高温区移动,总反应热减小,BMI的加入可以提高材料的力学性能和热稳定性,改性后材料断裂面的形态呈现韧性断裂特征。  相似文献   

12.
邻-邻位亚甲基桥是酚醛树脂主体结构单元之间的主要链接方式之一。采用Gaussian 09中的密度泛函理论B3LYP/6-311G(d,p)方法,对邻-邻位亚甲基桥型模型化合物邻位双羟苯基甲烷(2BHM)的热解反应机理进行了量子化学理论研究。设计了5种热解反应途径,对每种反应途径的反应物、产物和过渡态的结构进行了能量梯度全优化,并对过渡态进行了IRC验证。计算了各反应途径的标准动力学参数,最后进行了相关实验验证。计算结果表明Path3为2BHM的最优热解路径,对应的产物为苯酚和邻甲酚,所有路径的终产物中均有苯酚,且CO_2要比CO更容易生成。热解实验结果显示热解产物中苯酚含量最高,而CO并未出现。这说明计算结果与实验结果基本一致,同时也表明应用量子化学计算理论研究酚醛树脂的热解机理是一种有效的研究方法。  相似文献   

13.
为研究酚醛树脂对芳纶纸蜂窝性能的影响,本文采用两种不同的酚醛树脂制备芳纶纸蜂窝芯材,对所制备蜂窝芯材的压缩性能和剪切性能进行测试,同时结合蜂窝端面树脂分布观察、树脂与芳纶纸接触角测量等方法,分析了两种树脂所制备蜂窝芯材性能出现差异的原因,结果表明:树脂中溶剂水的挥发速度、树脂与芳纶纸之间的表面张力会影响树脂在蜂窝壁上的树脂分布;蜂窝芯材树脂含量相同时,其节点两侧的树脂胶柱有利于提高蜂窝芯材压缩强度,但树脂堆积在节点后会降低蜂窝壁厚,造成蜂窝的剪切强度和模量下降。  相似文献   

14.
T700/PEEK热塑性自动铺放预浸纱制备质量控制及性能研究   总被引:1,自引:0,他引:1  
陈浩然  李勇  还大军  王鑫  褚奇奕 《航空学报》2018,39(6):421842-421842
为满足高性能热塑性复合材料自动铺丝(AFP)成型工艺的原材料需求,研究了粉末悬浮法浸渍制备T700/PEEK预浸纱关键工艺参数及预浸料性能,分析聚醚醚酮PEEK浸渍连续碳纤维过程中不同工艺参数(悬浊液浓度、超声功率、张力、牵引速率、浸渍温度、辊压温度及压辊间隙)对预浸纱质量的影响规律,利用扫描电子显微镜(SEM)观察T700/PEEK预浸纱内部孔隙率及界面结合状态,将粉末悬浮法制备的T700/PEEK预浸纱模压制备了热塑性复合材料单向层合板试样,并测试了其热塑性复合材料层间剪切强度和拉伸强度。研究结果表明:预浸纱含胶量与粉末悬浮液浓度变化线性正相关,且随超声功率的增大而升高;浸渍过程中伴随温度的升高以及牵引速率的减小,预浸纱宽度变小、孔隙率降低,随着张力的增大,预浸纱宽度增大、孔隙率降低;辊压成型过程中随着温度的提高以及压辊间隙的减小,预浸纱宽度增大、孔隙率降低。综合考虑各工艺参数的影响规律,获得优化的热塑性预浸纱制备工艺参数:浸渍温度为360~370℃,辊压温度为330℃,压辊间隙为0.1 mm,牵引速率为15~20 mm/s,张力为7 N。扫描电镜结果显示树脂与纤维界面结合紧密,复合材料的孔隙率可降低至1.8%,复合材料层间剪切强度为73.43 MPa,纵向拉伸强度达1.71 GPa。  相似文献   

15.
综述了近年来聚酰亚胺胶膜的研究进展,对热固性和热塑性聚酰亚胺胶膜的化学合成方法及其结构与性能进行了分析和总结,并对其今后的发展趋势进行了展望。  相似文献   

16.
一种民机装饰用阻燃复合材料的研究   总被引:1,自引:0,他引:1  
酚醛树脂是一种自身具有较好阻燃性能的树脂 ,但是它的固化产物性脆 ,固化工艺性较差 ,因而其用途受到了一定的限制。本文对酚醛树脂进行了改性 ,并制成玻璃纤维 /酚醛复合材料。重点对该复合材料进行了燃烧性能、烟密度、氧指数和燃烧后所析放的气体等进行了实验 ,并采用红外光谱、热失重动力学和扫描电镜等方法对其阻燃机理进行了分析。同时对其力学性能还进行了研究。结果表明 ,这种改性酚醛树脂体系的复合材料不仅具有非常好的阻燃性能 ,而且还有良好的力学特性 ,可用作民机内装饰材料  相似文献   

17.
《中国航空学报》2021,34(9):236-246
Fused deposition modeling (FDM) has unique advantages in the rapid prototyping of thermoplastics which have been developed in diverse fields. However, although great efforts have been made to optimize FDM process, the mechanical properties of printed parts are limited by the weak interlamination bonding as well as the poor performance of raw filaments used, such as acrylonitrile butadiene styrene (ABS), polylactic acid (PLA). Adding fibers into thermoplastic matrix and preparing high-performance filaments have been indicated to enhance the properties of fabricated parts. Recently, heat-resistant polyetheretherketone (PEEK) and its fiber reinforced composites were proposed for FDM process due to overcoming the limitation of equipment and process. However, few researches have been reported on the effects of FDM-3D printing parameters on the mechanical properties of fiber reinforced PEEK composites. Therefore, 5wt% carbon fiber (CF) and glass fiber (GF) reinforced PEEK composite filaments were prepared respectively in this study. The effects of various printing parameters including nozzle temperature, platform temperature, printing speed and layer thickness on the mechanical properties (including tensile strength, flexural strength and impact strength) were surveyed. To analyze the microstructure and failure reasons of printed CF/PEEK and GF/PEEK samples, the tensile fractured surfaces were investigated via scanning electron microscope (SEM).  相似文献   

18.
非热压罐成型(out of autoclave process,OoA)技术是实现结构复合材料低成本制造的有效途径,是当前复合材料研究领域的热点之一。本文介绍了OoA成型复合材料国内外的研究前沿以及在航空航天领域的应用现状,从材料体系和成型工艺两大方面总结了OoA成型过程中的缺陷控制方法。在OoA预浸料成型技术中,可通过尽量减少树脂体系中挥发物含量、精细调控树脂体系反应和流变特性、控制预浸料中纤维和树脂的浸润程度、优化成型工艺等手段有效降低复合材料的孔隙率等缺陷。  相似文献   

19.
以酚醛树脂(PF)为基体原料,以含B、Si的陶瓷为改性填料制备高温粘结剂并对石墨材料进行粘接。结果表明,高温粘结剂对石墨材料具有较为理想的粘接性能,陶瓷填料有效改善了高温处理后接头的体积收缩现象,并在粘接界面处形成了较强的化学键合力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号