首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
The radial component of the magnetic field at Ulysses, over latitudes from –10° to –45° and distances from 5.3 to 3.8 AU, compares very well with corresponding measurements being made by IMP-8 in the ecliptic at 1AU. There is little, if any, evidence of a latitude gradient. Variances in the field, normalized to the square of the field magnitude, show little change with latitude in variations in the magnitude but a large increase in the transverse field variations. The latter are shown to be caused by the presence of large amplitude, long period Alfvénic fluctuations. This identification is based on the close relation between the magnetic field and velocity perturbations including the effect of anisotropy in the solar wind pressure. The waves are propagating outward from the Sun, as in the ecliptic, but variance analysis indicates that the direction of propagation is radial rather than field-aligned. A significant long-period component of 10 hours is present.  相似文献   

2.
Our picture of modulation in the inner heliosphere has been greatly affected by observations from the Ulysses mission, which since 1992 has provided the first comprehensive exploration of modulation as a function of latitude from 80° S to 80° N heliographic latitude. Among the principal findings for the inner heliosphere are: a) the cosmic ray intensity depends only weakly on heliographic latitude; b) for the nuclear components, and especially for the anomalous components, the intensity increases towards the poles, qualitatively consistent with predictions of drift models for the current sign of the solar magnetic dipole; c) no change in the level of modulation was observed across the shear layer separating fast polar from slow equatorial solar wind near 1 AU; d) 26-day recurrent variations in the intensity persist to the highest latitudes, even in the absence of clearly correlated signatures in the solar wind and magnetic field; e) the surface of symmetry of the modulation in 1994-95 was offset about 10° south of the heliographic equator; f) the intensity of electrons and of low energy (< 100 MeV) protons showed essentially no dependence on heliographic latitude.  相似文献   

3.
In November 1992, the Ulysses spacecraft observed a multiple solar particle event and a CME event at 5.2 AU and a heliographic latitude of 20° S which were superimposed to the recurrent corotating interacting region. Distinct particle flux increases caused by these events were observed in all energy channels of the EPAC experiment. The experimental findings are discussed.  相似文献   

4.
Ulysses plasma observations reveal that the forward shocks that commonly bound the leading edges of corotating interaction regions (CIRs) beyond 2 AU from the Sun at low heliographic latitudes nearly disappeared at a latitude of S26°. On the other hand, the reverse shocks that commonly bound the trailing edges of the CIRs were observed regularly up to S41.5°, but became weaker with increasing latitude. Only three CIR shocks have been observed poleward of S41.5°; all of these were weak reverse shocks. The above effects are a result of the forward waves propagating to lower heliographic latitudes and the reverse waves to higher latitudes with increasing heliocentric distance. These observational results are in excellent agreement with the predictions of a global model of solar wind flows that originate in a simple tilted-dipole geometry back at the Sun.  相似文献   

5.
The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were launched in 1972, 1974, and 1977, respectively. While these three spacecraft are all at compartively low heliographic latitudes compared with Ulysses, their observation span almost two solar cycles, a range of heliocentric distances from 1 to 57 AU, and provide a unique insight into the long-term variability of the global structure of the solar wind. We examine the spatial and temporal variation of average solar wind parameters and fluxes. Our obsevations suggest that the global structure of the outer heliosphere during the declining phase of the solar cycle at heliographic latitudes up to 17.5°N was charaterized by two competing phenomena: 1) a large-scale increase of solar wind density, temperature, mass flux, dynamic pressure, kinetic energy flux, and thermal enery flux with heliographic latitude, similar to the large-scale latitudinal gradient of velocity seen in IPS observations, 2) a small-scale decrease in velocity and temperature, and increase in density near the heliospheric current sheet, which is associated with a band of low speed, low temperature, and high density solar wind similar to that observed in the inner heliosphere.  相似文献   

6.
The spectra and anisotropies of ions 30 keV have been measured by the Low Energy Charged Particle experiment on Voyagers 1 and 2 in the vicinity of interplanetary shocks between radial distances of 1–55 AU and heliographic latitudes 11° S-32° N. The spectra and anisotropies associated with a recent corotating (CIR) event at low latitude observed at Voyager 2 (36.6 AU, –9°) are similar to those of another event at high latitude observed at Voyager 1 (49.8 AU, 33.5°). An earlier CIR event observed at Voyager 2 (14 AU) associated with the previous solar cycle produced spectra and anisotropies remarkably similar to the more recent events. The anisotropies are used to calculate the solar wind velocity downstream of shocks where possible using the Compton-Getting effect, allowing the determination of previously unknown velocities at the locations of Voyager 1. For the large shock event observed at Voyagers 1 (38 AU, 30°) and 2 (29 AU, 3°) in mid-1989, the postshock spectra and anisotropies are well described by convected power law distributions. The Voyager 1 and 2 postshock spectra 4 days after the shock passage are nearly identical. The preshock anisotropies at low energy are similar, despite differences in the magnetic field orientation and the low energy spectrum. We find that the 30 keV ion anisotropies are generally well described by convective distributions downstream but not in the upstream region for shocks and many other shock events at Voyagers 1 and 2.  相似文献   

7.
Data obtained by the Ulysses magnetometer and solar wind analyzer have been combined to study the properties of magnetic holes in the solar wind between 1 and 5.4 AU and to 23° south latitude. Although the plasma surrounding the holes was generally stable against the mirror instability, there are indications that the holes may have been remnants of mirror mode structures created upstream of the points of observation. Those indications include: (1) For the few holes for which proton or alpha-particle pressure could be measured inside the hole, the ion thermal pressure was always greater than in the plasma adjacent to the holes. (2) The plasma surrounding many of the holes was marginally stable for the mirror mode, while the plasma environment of all the holes was significantly closer to mirror instability than was the average solar wind. (3) The plasma containing trains of closely spaced holes was closer to mirror instability than was the plasma containing isolated holes. (4) The near-hole plasma had much higher ion (ratio of thermal to magnetic pressure) than did the average solar wind.  相似文献   

8.
McKibben  R.B.  Lopate  C.  Zhang  M. 《Space Science Reviews》2001,97(1-4):257-262
With Ulysses approaching the south solar polar latitudes during a period of high solar activity, it is for the first time possible to study the distribution of solar energetic particles (SEPs) in solar latitude as well as in radius and longitude. From July 1997 to August 2000, Ulysses moved from near the solar equator at ∼5 AU to ∼67° S latitude at ∼3 AU. Using observations of >∼30 MeV protons from Ulysses and IMP-8 at Earth we find good correlation between large SEP increases observed at IMP and Ulysses, almost regardless of the relative locations of the spacecraft. The observations show that within a few days after injection of SEPs, the flux in the inner heliosphere is often almost uniform, depending only weakly on the position of the observer. No clear effect of the increasing solar latitude of Ulysses is evident. Since the typical latitudinal extent of CMEs, which most likely accelerate the SEPs, is only ∼30°, this suggests that the enhanced cross-field propagation for cosmic rays and CIR-accelerated particles deduced from Ulysses’ high latitude studies near solar minimum is also true for SEPs near solar maximum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
We report observations of radial and latitudinal gradients of Ulysses plasma parameters. The solar wind velocity increased rapidly with latitude from 0° to 35°, then remained approximately constant at higher latitudes. Solar wind density decreased rapidly from 0° to 35° of latitude, and also was approximately constant beyond that latitude. The mass flux similarly decreased away from the equator (but less than the density), whereas the momentum flux was relatively constant. The radial gradient of the entropy at high latitude indicated a value for the polytrope index of about 1.72 (close to adiabatic); the in-ecliptic estimates of radial gradients for temperature and entropy may be biased by temporal variation. A striking increase in the alpha particle-proton velocity difference with latitude is found.  相似文献   

10.
This paper summarizes space probe observations relevant to the determination of the large-scale, three-dimensional structure of the solar wind and its solar cycle variations. Observations between 0.6 and 5 AU reveal very little change in the average solar-wind velocity, but a pronounced decrease in the spread of velocities about the average. The velocity changes may be accompanied by a transfer of energy from the electrons to the protons. The mass flux falls off approximately as the inverse square of distance as expected for spherically symmetric flow. Measurements of the interplanetary magnetic field show that the spiral angle is well defined over this entire range of distances, but there is some evidence that the spiral may wind up more slowly with distance from the Sun than predicted by Parker's model. The variances or noise in the field and plasma have also been measured as a function of radial distance.During the rising portion of the solar-activity cycle, the solar-wind velocity showed a pronounced positive correlation with solar latitude over the range ±7°. Several other plasma parameters which have been found generally to correlate (or anticorrelate) with velocity also showed a latitude variation; these parameters include the density, percent helium, and azimuthal flow direction. The average polarity and the north-south component of the magnetic field depend on the solar hemisphere in which the measurements are made.Dependence on the phase of the solar-activity cycle can be found in the data on the number of high speed streams, the proton density, the percent helium, and the magnetic-field strength and polarity.  相似文献   

11.
Malandraki  O.E.  Sarris  E.T.  Lanzerotti  L.J.  Maclennan  C.G.  Pick  M.  Tsiropoula  G. 《Space Science Reviews》2001,97(1-4):263-268
In January 2000, the Ulysses spacecraft observed an ICME event at 43° S heliographic latitude and ∼ 4.1 AU. We use electron (E e>38 keV) observations to trace the topology of the IMF embedded within the ICME. The still controversial issue of whether ICMEs have been detached from the solar corona or are still magnetically anchored to it when they arrive at the spacecraft is tackled. An in ecliptic ICME event is also presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Suess  S. 《Space Science Reviews》2001,97(1-4):55-58
Microstreams and pressure balance structures in fast solar wind were more easily detected at Ulysses at 2.2 AU over the poles than at Helios at 0.3 AU. This is because solar rotation leads to dynamic interactions between different speed regimes at a rate that depends on latitude for the same size features. Dynamic interactions make structures more difficult to detect with increasing distance from the Sun. At solar maximum, Ulysses will sample high latitude solar wind coming from streamers, providing information on fine structure at the tops of streamers and on the source of slow solar wind. Examples are given here of the detectability of various sized structures at Ulysses when it is over the polar regions of the Sun. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Solar wind charge states measured by ULYSSES/SWICS in the south polar hole   总被引:1,自引:0,他引:1  
The Ulysses mission now has an extensive data base covering several passes of the south polar coronal hole as the spacecraft proceeds to higher latitudes. Using composition measurements from the SWICS experiment on the Ulysses spacecraft, we have obtained charge state distributions, and hence inferred coronal ionization temperatures, for several solar wind species. In particular, we present an overview of Oxygen ionization temperature measurements, based on the O7+/O6+ ratio, for the period January 1993 until April 1994 (23°S to 61°S heliographic latitude), and detailed Oxygen, Silicon and Iron charge state distributions of the south polar hole during a two month period of nearly continuous hole coverage, Dec 1993–Jan 1994 (45°S to 52°S heliographic latitude).  相似文献   

14.
Suess  S. T.  Phillips  J. L.  McComas  D. J.  Goldstein  B. E.  Neugebauer  M.  Nerney  S. 《Space Science Reviews》1998,83(1-2):75-86
The solar wind in the inner heliosphere, inside ~ 5 AU, has been almost fully characterized by the addition of the high heliographic latitude Ulysses mission to the many low latitude inner heliosphere missions that preceded it. The two major omissions are the high latitude solar wind at solar maximum, which will be measured during the second Ulysses polar passages, and the solar wind near the Sun, which could be analyzed by a Solar Probe mission. Here, existing knowledge of the global solar wind in the inner heliosphere is summarized in the context of the new results from Ulysses.  相似文献   

15.
In the 25 months since Jupiter flyby, the Ulysses spacecraft has climbed southward to a heliolatitude of 56°. This transit has been marked by an evolution from slow, dense coronal streamer belt solar wind through two regions where the rotation of the Sun carried Ulysses back and forth between streamer belt and polar coronal hole flows, and finally into a region of essentially continuous fast, low density solar wind from the southern polar coronal hole. Throughout these large changes, the momentum flux normalized to 1 AU displays very little systematic variation. In addition, the bulk properties of the polar coronal hole solar wind are quite similar to those observed in high speed streams in the ecliptic plane at 1 AU. Coronal mass ejections and forward and reverse shocks associated with corotating interaction regions have also been observed at higher heliolatitudes, however they are seen less frequently with increasing southern heliolatitude. Ulysses has thus far collected data from 20° of nearly contiguous solar wind flows from the polar coronal hole. We examine these data for characteristic variations with heliolatitude and find that the bulk properties in general show very little systematic variation across the southern polar coronal hole so far.  相似文献   

16.
The most significant information about fields and plasmas in the outer solar system, based on observations by Pioneer 10 and 11 investigations, is reviewed. The characteristic evolution of solar wind streams beyond 1 AU has been observed. The region within which the velocity increases continuously near 1 AU is replaced at larger distances by a thick interaction region with abrupt jumps in the solar wind speed at the leading and trailing edges. These abrupt increases, accompanied by corresponding jumps in the field magnitude and in the solar wind density and temperature, consist typically of a forward and a reverse shock. The existence of two distinct corotating regions, separated by sharp boundaries, is a characteristic feature of the interplanetary medium in the outer solar system. Within the interaction regions, compression effects are dominant and the field strength, plasma density, plasma temperature and the level of fluctuations are enhanced. Within the intervening quiet regions, rarefaction effects dominate and the field magnitude, solar wind density and fluctuation level are very low. These changes in the structure of interplanetary space have significant consequences for the many energetic particles propagating through the medium. The interaction regions control the access to the inner solar system of relativistic electrons from Jupiter's magnetosphere. The interaction regions and shocks appear to be associated with an acceleration of solar protons to MeV energies. Flare-generated shocks are observed to be propagating through the outer solar system with constant speed, implying that the previously recognized deceleration of flare shocks takes place principally near the Sun. Radial gradients in the solar wind and interplanetary field parameters have been determined. The solar wind speed is nearly constant between 1 and 5 AU with only a slight deceleration of 30 km s+1 on the average. The proton flux follows an r +2 dependence reasonably well, however, the proton density shows a larger departure from this dependence. The proton temperature decreases steadily from 1 to 5 AU and the solar wind protons are slightly hotter than anticipated for an adiabatic expansion. The radial component of the interplanetary field falls off like r +2 and, on the average, the magnitude and spiral angle also agree reasonably well with theory. However, there is evidence, principally within quiet regions, of a significant departure of the azimuthal field component and the field magnitude from simple theoretical models. Pioneer 11 has obtained information up to heliographic latitudes of 16°. Observations of the interplanetary sector structure show that the polarity of the field becomes gradually more positive, corresponding to outward-directed fields at the Sun, and at the highest latitudes the sector structure disappears. These results confirm a prior suspicion that magnetic sectors are associated with an interplanetary current sheet surrounding the Sun which is inclined slightly to the solar equator.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

17.
SWAN is the first space instrument dedicated to the monitoring of the latitude distribution of the solar wind by the Lyman alpha method. The distribution of interstellar H atoms in the solar system is determined by their destruction during ionization charge-exchange with solar wind protons. Maps of sky Ly-α emission have been recorded regularly since launch. The upwind maximum emission region deviates strongly from the pattern that would be expected from a solar wind that is constant with latitude. It is divided in two lobes by a depression aligned with the solar equatorial plane, called the Lyman-alpha groove, due to enhanced ionization along the neutral sheet where the slow and dense solar wind is concentrated. The groove (or the anisotropy) is more pronounced in 1997 than in 1996, but it then decreases between 1997 and 1998. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The basic physical processes that lead to the long-term modulation of cosmic rays by the solar wind have been known for many years. However our knowledge of the structure of the heliosphere, which determines which processes are most important for the modulation, and of the variation of this structure with time and solar activity level is still incomplete. Study of the modulation provides a tool for probing the scale and structure of the heliosphere. While the Pioneer and Voyager spacecraft are surveying the radial structure and extent of the heliosphere at modest heliographic latitudes, theUlysses mission is the first to undertake a nearly complete scan of the latitudinal structure of the modulated cosmic ray intensity in the inner heliosphere (R<5.4 AU).Ulysses will reach latitudes of 80°S in September 1994 and 80°N in July 1995 during the approach to minimum activity in the 11 year solar cycle. We present a first report of measurements extending to latitudes of 52°S, which show surprisingly little latitudinal effect in the modulated intensities and suggest that at this time modulation in the inner heliosphere may be much more spherically symmetric than had generally been believed based upon models and previous observations.  相似文献   

19.
Interstellar dust detected by the dust sensor onboard Ulysses was first identified after the Jupiter flyby when the spacecraft's trajectory changed dramatically (Grün et al., 1994). Here we report on two years of Ulysses post-Jupiter data covering the range of ecliptic latitudes from 0° to –54° and distances from 5.4 to 3.2 AU. We find that, over this time period, the flux of interstellar dust particles with a mean mass of 3·10–13 g stays nearly constant at about 1·10–4, m–2 s–1 ( sr)–1, with both ecliptic latitude and heliocentric distance.Also presented are 20 months of measurements from the identical dust sensor onboard the Galileo spacecraft which moved along an in-ecliptic orbit from 1.0 to 4.2 AU. From the impact direction and speeds of the measured dust particles we conclude that Galileo almost certainly sensed interstellar dust outside 2.8 AU; interstellar particles may also account for part of the flux seen between 1 and 2.8 AU.  相似文献   

20.
We have developed a 2D semi-empirical model (Sittler and Guhathakurta 1999) of the corona and the interplanetary medium using the time independent MHD equations and assuming azimuthal symmetry, utilizing the SOHO, Spartan and Ulysses observations. The model uses as inputs (1) an empirically derived global electron density distribution using LASCO, Mark III and Spartan white light observations and in situ observations of the Ulysses spacecraft, and (2) an empirical model of the coronal magnetic field topology using SOHO/LASCO and EIT observations. The model requires an estimate of solar wind velocity as a function of latitude at 1 AU and the radial component of the magnetic field at 1 AU, for which we use Ulysses plasma and magnetic field data results respectively. The model makes estimates as a function of radial distance and latitude of various fluid parameters of the plasma such as flow velocity V, temperature Teff, and heat flux Qeff which are derived from the equations of conservation of mass, momentum and energy, respectively, in the rotating frame of the Sun. The term "effective" indicates possible wave contributions. The model can be used as a planning tool for such missions as Solar Probe and provide an empirical framework for theoretical models of the solar corona and solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号