首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 183 毫秒
1.
叶栅二次流旋涡结构与损失分析   总被引:3,自引:2,他引:1  
采用三维粘性程序对某型动力涡轮的第一级进行了数值模拟, 模拟结果捕捉到了该涡轮级叶栅的内部流的流动细节, 展示了涡轮叶栅端壁和型面流动及叶栅通道内的三维流动结构.通过对叶栅中的二次流现象和流动损失机理的分析, 揭示了该涡轮级叶栅通道内二次流旋涡结构(马蹄涡、通道涡、壁角涡、尾迹涡、泄漏涡等)的演变过程, 以及旋涡结构对损失分布的影响.   相似文献   

2.
叶片弯曲对压气机叶栅气动性能影响的数值模拟   总被引:2,自引:0,他引:2  
为了研究压气机中采用弯曲叶片对叶栅流场气动性能的影响,本文应用Beam-Warming近拟隐式因子分解格式以及MML代数湍流模型,采用拟压缩性方法求解雷诺平均拟压缩N-S方程组,对弯曲叶片压气机叶栅内三维粘性流场进行了数值模拟。结果表明,在给定的条件下,三种叶栅内涡系结构具有某种相拟似性。反弯叶栅吸力面/端壁角区分离严重,中部流动较为理想;正弯叶栅基本消除了吸力面/端壁角区分离,但中部分离较明显;这些又导致三种叶栅流道中涡的大小和强弱存在明显的不同。计算结果与实验结果比较,两者吻合较好。  相似文献   

3.
大转角正弯扩压叶栅流场性能实验与数值研究   总被引:4,自引:4,他引:0       下载免费PDF全文
实验对不同冲角下三种叶型折转角环形压气机直、弯叶栅进、出口流场进行了详细的测量,并利用实验结果对数值模拟结果进行了校核,得到了详细的直、弯叶栅流道内的计算结果。结果表明,大折转角叶栅流道内旋涡由多涡结构向单一涡结构转变的趋势明显,叶片正弯使得流道内近吸力面的涡系径向掺混作用加强;叶展中部流动分离的加重导致集中涡系破裂,从而引起流道内气流的严重堵塞,这是损失激增的主要原因,因此,要在高负荷压气机叶栅中应用正弯叶片,必须有效抑制中部流动的恶化。  相似文献   

4.
具有叶顶间隙涡轮转子叶栅流动的拓扑及旋涡结构观测   总被引:1,自引:0,他引:1  
为了了解具有顶部间隙的涡轮转子叶栅流道内及间隙内的流动状况,采用五孔球头测针和五孔微型束状测针分别对叶栅流道和间隙进行了测量,同时对端壁及叶片壁面进行了流动显示,采用拓扑分析方法对显示结果进行了详细分析,探讨了间隙存在时叶栅各种旋涡的形成机理。测量及显示结果表明:由于顶部间隙的存在,在叶栅顶部形成如泄漏涡等复杂的涡系结构,这些涡系之间及它们与上通道涡之间发生强烈的相互作用,明显增大了叶栅的顶部损失;在叶栅尾缘附近存在着部分回流区域。  相似文献   

5.
大间隙涡轮叶栅流场结构的研究   总被引:2,自引:0,他引:2  
对具有 3.6 %相对叶顶间隙涡轮叶栅的三维流场进行了实验和数值模拟 ,分析了大间隙涡轮叶栅流道内的涡系结构。结果表明在叶顶间隙内部和上半叶展出现了复杂的分离涡系 ,在上半叶展存在叶顶泄漏涡、上通道涡、吸力侧脱落涡、压力侧叶顶脱落涡和被泄漏流吹向下游的尾缘涡系的相互作用。  相似文献   

6.
为了进一步揭示叶顶泄漏与压气机叶栅三维角区分离流动的相互作用机制,采用五孔气动探针测量了叶栅出口截面气动参数,并对机匣端壁静压进行了测量,详细分析了不同间隙尺寸及来流角度时压气机叶栅间隙流对角区三维分离流动的影响机理.研究结果表明,适当大小叶顶间隙引入的泄漏流阻止了端壁二次流动与叶片吸力面附面层之间的相互作用,移除了三维角区分离,改善了叶栅性能.随着叶顶间隙尺寸及叶栅内气流折转程度的增加,叶顶泄漏涡与上通道涡间的相互作用程度逐渐增强.  相似文献   

7.
高速压气机叶栅旋涡结构及其流动损失研究   总被引:5,自引:0,他引:5  
为揭示高亚声速来流条件下压气机叶栅内部流动特性,对高速压气机叶栅通道内旋涡结构和流动损失的产生与演变规律进行研究。首先建立了数值仿真模型并用实验验证,然后详细研究了叶栅通道内主要旋涡结构、拓扑规律和旋涡模型,最后分析了叶栅通道内流动损失与旋涡结构的内在联系。高速压气机叶栅通道内主要存在马蹄涡、端壁展向涡、通道涡、壁角涡、壁面涡、集中脱落涡和尾缘脱落涡7个集中涡系,通道涡由端壁来流附面层中发展而来,是角区复杂旋涡结构的主要诱因;攻角由0°增大为4°,通道涡的涡核更早地脱落端壁附面层向角区发展,但对角区流动的影响减弱,叶片尾缘未形成明显的集中脱落涡。伴随着集中脱落涡的消失,叶栅固壁面拓扑结构中,叶片尾缘吸力面上没有出现与集中脱落涡对应的分离螺旋点,并且与叶中脱落涡层相对应的分离线和再附线消失,尾缘脱落涡仅包含近端区的一个分支。由总压损失沿流向和展向的变化规律,叶栅通道流动损失主要来源于角区复杂旋涡结构引起的强剪切作用,近端壁区的总压损失与角区主要涡系结构的生成和发展密切相关;攻角由0°增大至4°,角区旋涡的影响能力变弱,近端区流动损失减小,与叶中部位总压损失的差异缩小。  相似文献   

8.
高负荷扩压叶栅三维定常旋涡结构建模研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为进一步认识高负荷扩压叶栅内的流动机理和旋涡演变规律,采用经试验校核的数值方法,以具有60°折转角的NACA65-010叶型为研究对象,运用拓扑分析理论,探讨了叶栅流道内马蹄涡、通道涡、集中脱落涡和壁角涡等二次旋涡的生成、演绎与发展。分析认为,在高负荷扩压叶栅中,对流场影响最大的涡系结构为通道涡,通道涡在130%B截面转变为稳定的内旋结构,流道内的壁角涡由通道涡诱导形成,而出口角涡则是在叶片尾缘出口绕流与通道涡的综合作用下形成的,流场出口最终呈现出通道涡与集中脱落涡并存的稳定结构。最后给出了0°冲角下的三维旋涡结构示意图。  相似文献   

9.
为进一步认识高负荷扩压叶栅内的流动机理和旋涡演变规律,采用经试验校核的数值方法,以具有60°折转角的NACA65-010叶型为研究对象,运用拓扑分析理论,探讨了叶栅流道内马蹄涡、通道涡、集中脱落涡和壁角涡等二次旋涡的生成、演绎与发展。分析认为,在高负荷扩压叶栅中,对流场影响最大的涡系结构为通道涡,通道涡在130%B截面转变为稳定的内旋结构,流道内的壁角涡由通道涡诱导形成,而出口角涡则是在叶片尾缘出口绕流与通道涡的综合作用下形成的,流场出口最终呈现出通道涡与集中脱落涡并存的稳定结构。最后给出了0°冲角下的三维旋涡结构示意图。  相似文献   

10.
涡轮叶栅端壁区流动的实验研究   总被引:1,自引:0,他引:1  
本文在大尺寸低速开式叶栅传热风洞中对一种高压涡轮导向叶栅中的流场进行了实验研究。采用五孔针对5个雷诺数下的叶栅端壁区三维流场进行了测量,并用线簇和小球浮动法对5个工况的流动进行了流场显示。实验结果表明:马蹄涡压力面分支在向吸力面运动的过程中,破坏了来流附面层的结构,在马蹄涡压力面分支之后,叶栅通道中产生了一个新的从压力面到吸力面的新附面层,新附面层的厚度小于来流附面层厚度;三维流动区约占叶栅通道的40%;雷诺数的增大将增强端壁区的三维流动。从流场显示图片可以观测叶片吸力面靠近端壁的角涡形成与发展,以及吸力面上的三角形区域;流场显示的通道涡大小与流场测量结果吻合。本文的实验结果有助于分析端壁表面和叶片表面换热特性的形成机理。   相似文献   

11.
陶德平  马继华 《航空学报》1989,10(3):119-125
 本文给出了压气机叶栅出口截面的损失分布和气流角沿叶高的变化。叶栅二次涡和端壁吸力面角区分离引起流面翘曲和扭转,角区分离形成损失核心。二次流理论计算叶栅出气角沿叶高变化与实验相近。  相似文献   

12.
高负荷压气机叶栅分离结构及其等离子体流动控制   总被引:8,自引:0,他引:8  
赵小虎  吴云  李应红  赵勤 《航空学报》2012,33(2):208-219
 为揭示高负荷压气机叶栅内部流动损失的产生机理和分布规律以及等离子体气动激励的作用机制,利用拓扑分析和数值计算方法,从计算模型的建立与验证、基准流场的分离结构和等离子体流动控制3个方面展开研究;对总压损失系数分布、拓扑结构和表面流谱与空间流线分布以及旋涡结构进行分析,并开展了激励方式的优化分析.结果表明:随着攻角的增大,固壁面拓扑结构增加了3对奇点,吸力面流向激励改变了固壁面拓扑结构.当攻角为2°时,在吸力面拓扑结构中产生了一对奇点,打断了角区分离线,并引入了一条回流再附线.叶栅流道内部有5个主要涡系,尾缘径向对涡促进流体的展向流动,并成为吸力面倒流的主要组成部分;角涡是一个独立的涡系,其强度和尺度不受等离子体气动激励的影响.吸力面流向激励可以改善叶中流场,但对角区流动作用很小;端壁横向激励可以降低角区流动损失,对叶中流场作用有限;吸力面流向与端壁横向组合激励在整个叶高范围内均可以显著抑制流动分离;端壁横向流动对角区流动分离结构的影响大于吸力面附面层的分离.吸力面流向激励的优化明显降低,而端壁横向激励和组合激励的优化保持并增强了等离子体流动的控制效果.  相似文献   

13.
压气机叶栅内不同高度端壁翼刀的实验   总被引:1,自引:0,他引:1  
通过采用五孔探针在低速平面风洞上测量压气机叶栅流场的方法,研究了不同高度和周向位置的端壁翼刀对叶栅能量损失及二次流速度矢量的影响.结果表明,使叶栅总损失降低的最佳周向安装位置是距离吸力面70%相对节距处,最佳翼刀高度为5 mm;存在使叶栅总损失降低的极限翼刀高度.当翼刀高度增加时,翼刀涡更加清晰.安装翼刀可以改变叶栅端壁损失的分布,进而控制吸力面/端壁角区的流动,改善叶栅的气动性能.   相似文献   

14.
为了揭示等离子体气动激励对角区分离的作用效果,应用FLUENT软件数值模拟了等离子体激励器对压气机叶栅角区分离的影响.采用等离子体激励器的简化唯象模型,在压气机叶片吸力面和端壁不同位置沿流向施加激励,对总压损失系数、极限流线、不同截面流动情况进行了比较分析.结果表明:吸力面激励对角区分离改善有限,角区未失速时,近分离点前是激励最佳位置,角区失速后,激励位置越靠前效果越好;端壁流向激励能明显减小角区分离损失,分离点至叶片前缘任何位置施加激励效果一样;组合激励同时减小吸力面边界层和端壁边界层损失,使角区分离消失且不受攻角变化影响.  相似文献   

15.
组合抽吸对大转角扩压叶栅性能的影响   总被引:7,自引:2,他引:5  
实验研究了低速条件下在端壁和吸力面同时进行附面层吸除对某大转角扩压叶栅性能的影响.在叶片表面及端壁进行了墨迹流动显示,并对叶栅出口截面进行了测量.基于实验的抽吸槽布置方式:端壁吸气主要影响区域是吸力面角区;吸力面抽吸可以减小角区范围,延迟叶片吸力面附面层转捩,改善中径处流场;组合抽吸则优化了叶栅整体流场,使流动更加均一高效,由于削弱了端壁和吸力面附面层间的相互作用,组合抽吸在大吸气量下优于前两种吸气方式.   相似文献   

16.
进行了等离子体气动激励抑制低速压气机叶栅角区流动分离的数值仿真研究,并进行了实验验证.小攻角情况下,叶片吸力面角区流动分离导致显著的尾迹总压损失.来流速度为50 m/s(雷诺数为223 000)时,等离子体气动激励可以有效的抑制角区流动分离,降低总压损失.激励电压、频率分别为10 kV和22 kHz时,50%叶高处的尾迹压力分布基本不变,60%和70%叶高处的最大总压损失分别减小了13.83%和10.74%.增加激励电极组数或激励电压,可以增强抑制效果.   相似文献   

17.
压气机通道端壁附面层区叶片载荷分布研究   总被引:1,自引:0,他引:1  
为了探索叶片载荷分布对端壁附面层区流动的影响,设计出3套平面叶栅,叶片载荷分别趋前、居中和靠后。对于低速流动,采用实验和三维Navier-Stkoes方程方法对叶片表面、叶栅出口流场进行了研究。研究表明:叶片载荷靠后叶片(No.3)性能较叶片载荷趋前(No.1)和居中(No.2)叶片差;No.2叶片与No.1叶片比较,出口损失小,但落后角较大,扩压能力较小;在进口端壁附面层一定时,叶片前缘附近的端壁附面层区叶片力亏损变化与叶片力变化呈正相关;端壁面与叶片吸力面之间构成的角区内角涡,没有造成靠近后缘端壁附面层区吸力面静压明显下降。   相似文献   

18.
李清华  曹志远  胡骏 《推进技术》2019,40(9):1991-2002
附面层吸/吹气是抑制流动分离、提高压气机叶片负荷的有效技术途径。针对超声速压气机叶栅内激波诱导的角区分离,分别采用多种不同的端壁吸/吹气方案对其进行流动控制,旨在探索端壁吸/吹气对激波干涉下角区分离的控制机理,并对比分析端壁吸/吹气对超声速压气机叶栅角区分离的控制效果。结果表明:在激波/端壁附面层干涉下,该超声速压气机叶栅内存在大范围的激波诱导角区分离,角区分离使得该超声速叶栅存在强三维效应,二维叶栅中的单正激波变为"斜激波+正激波"结构,叶中吸力面尾缘开式分离变为闭式分离;端壁吸气可有效抑制该超声速叶栅的角区分离,吸气后近端壁区损失系数大幅降低,最优端壁吸气缝方案的起始点与亚声速压气机叶栅相同,但端壁吸气后叶中的双激波结构变为单正激波结构,叶中流动分离增大;端壁吹气也可有效抑制角区分离,其控制效果略优于端壁吸气,其原因是吹气缝处的静压高于吸气缝,对激波的增强作用弱于端壁吸气;与端壁吸气方案不同的是,最优端壁吹气缝方案的起始点位于叶片前缘。  相似文献   

19.
吸力面附面层抽吸在三维高负荷扩压叶栅中的作用机制   总被引:1,自引:1,他引:0  
对某矩形高负荷扩压叶栅在不同弦向位置开设全叶高抽吸槽的5组方案进行了数值研究,分析了抽吸槽弦向位置等参数对抽吸量分布规律的影响;通过叶栅实验探究了局部展向抽吸方案的效果.数值仿真的计算域包含吸附叶片内部的真空腔,边界条件按照实验条件设置.研究发现:全叶高抽吸方案的抽吸量沿展向大致呈C型分布;叶高中部和端部的主要抽吸效果都体现在叶高中部流场,端部的抽吸量对叶栅角区的回流有一定的抑制效果.抽吸量沿展向的分布规律受叶栅流道和叶片内腔流场的共同作用,因此应根据三维高负荷扩压叶栅流场的具体特性对吸力面抽吸槽/孔进行细化设计.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号