首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
为准确预测不同贮存期HTPB复合推进剂燃速对固体火箭发动机内弹道性能影响,文章通过燃烧实验测量了贮存2a、5a、8a和10a发动机推进剂燃速,通过燃烧室—喷管一体化三维流场仿真技术计算了不同贮存期发动机内弹道性能.实验与计算结果表明,贮存时间越长,推进剂燃速越慢,发动机燃烧室内出现压力高峰的时间越滞后,并且压力峰值越下降.  相似文献   

2.
固体火箭发动机HTPB推进剂力学性能老化研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究某型发动机高燃速端羟基聚丁二烯(HTPB)推进剂在寿命期内的力学性能,选择贮存2 a、5 a、8 a和10 a的发动机推进剂作为研究样本;通过应力松弛试验和3点弯曲断裂试验研究了不同贮存期的推进剂力学性能,结果表明:随着发动机贮存时间的延长,HTPB推进剂的松弛模量逐渐升高,而断裂韧度逐渐降低。  相似文献   

3.
储氢合金/AP/HTPB推进剂燃烧性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
制备了Al/AP/HTPB推进剂和储氢合金/AP/HTPB推进剂,并对它们进行了DSC,PDSC,爆热和燃速测试.DSC和PDSC测试结果表明,储氢合金对AP/HTPB推进剂的凝聚相反应有催化作用,在0.1MPa和5MPa下,使其凝聚相主分解温度分别降低21.67℃和15.67℃,凝聚相反应热分别提高105.97%和21.87%;爆热测试结果表明,储氢合金对AP/HTPB推进剂的气相反应有催化作用,使气相反应热提高4.74%;燃速结果表明,储氢合金可以提高AP/HTPB推进剂的燃速.进一步研究表明,A1/AP/HTPB推进剂和储氢合金/AP/HTPB推进剂的燃速与爆热存在一定的相关性.总结出了燃速-爆热关系式.  相似文献   

4.
通过常压热重法、高压差热分析、夹心件中断熄火燃烧实验及SEM观察和XPS分析等多种实验观测手段,初步研究了一种能有效地降低HTPB/AP复合推进剂压强指数的含铜有机络合物(TP)的作用过程。研究表明,TP通过促进氧化剂AP的高温分解过程促进推进剂的燃速;TP的作用效果与这种化合物的耐热性和燃烧过程中各种产物的性质有关。对典型催化剂TP的研究结果为筛选燃速催化剂和进一步研究燃速催化机理提供了分析的依据。  相似文献   

5.
HTPB推进剂热力耦合老化力学性能研究   总被引:3,自引:2,他引:1       下载免费PDF全文
程吉明  李进贤  侯晓  沙宝林 《推进技术》2016,37(10):1984-1990
为了研究预应变对复合固体推进剂老化性能的影响,针对HTPB复合固体推进剂开展了70℃热力耦合加速老化试验,通过单轴拉伸力学性能测试及拉伸断面扫描电镜试验研究了不同预应变作用下HTPB推进剂的老化性能。结果表明:在试验预应变范围内(≤15%),无论预应变水平多大,随老化时间的延长,粘合剂基体的氧化交联反应是HTPB推进剂的主要老化机理;在相同老化时间,预应变对HTPB推进剂力学性能的影响存在一个损伤阈值,当预应变超过该阈值时,拉伸断面中AP颗粒/粘合剂基体界面“脱湿”及粘合剂基体撕裂损伤现象明显。  相似文献   

6.
超期贮存发动机固体推进剂能量特性试验研究   总被引:4,自引:4,他引:0  
固体推进剂的老化,会使其燃速、爆热值下降,势必会影响固体火箭发动机的内弹道性能,从而影响导弹的正常飞行。文中介绍了通过3台超期贮存的某型固体发动机的解剖,并对其推进剂的燃速和爆热进行了试验测定;根据试验数据,对该型超期固体发动机进行了内弹道仿真及相关计算,得到了不同贮存期发动机的比冲和推力,为正确评估该型发动机服役寿命提供了参考数据。  相似文献   

7.
居建国  张仁  江瑜 《推进技术》1988,9(2):57-62,97,98
本文研究了HTPB固化交联体系对其推进剂燃速的影响。实验发现,在固化交联体系中含MAPO的推进剂燃速要比用已三醇交联的推进剂燃速高18.4%。应用热分析、中止燃烧、电子扫描显微镜等实验方法,对其作用机理作了分析说明。  相似文献   

8.
深入了解高能固体推进剂在低温条件下燃烧性能,获得燃烧波阵面变化规律,对评估推进剂在低温条件下的适应性能力具有重要指导意义。本文设计了燃烧波狭缝观测实验装置,采用高速摄影观测技术,对三组元HTPB固体推进剂在常温和低温条件下的燃烧过程进行了观测,获得了燃烧过程中波阵面的图像。结果表明,相比于在常温条件下,固体推进剂在低温条件下出现了燃烧波不稳定的情况。根据燃烧波图像计算出了推进剂的燃速,并与靶线法燃速测量结果进行比较。结果表明,两种方法测量的结果差异较小,推进剂在低温条件下的燃烧速度明显低于在常温条件下,常温条件的燃速在1.717~2.127mm/s,低温条件下的燃速在1.252~1.583mm/s。  相似文献   

9.
贺南昌 《推进技术》1985,6(5):42-48
本文研究了HTPB/AP推进剂中过氯酸铵(AP)含量对丁羟推进剂老化性能的影响。实验是在90℃的空气中进行的,老化性能以推进剂的拉伸性能、邵氏硬度、失重%、燃烧速度等项目为判据。实验结果表明:随着老化时间的增长,推进剂的最大强度增加;最大强度下的伸长率减小;邵氏硬度增加;失重%有缓慢的增多;而燃烧速度少量降低。推进剂中氧化剂AP含量的增多,或多或少有减轻推进剂性能老化变化的趋势,因而对HTPB推进剂老化性能的提高是有益处的。 本文对老化期间HTPB推进剂失重%所显现出来的特殊情况,作了理论上的解释。  相似文献   

10.
张炜  朱慧  张仁 《推进技术》1991,12(3):71-75
本文考察了五种铅盐对HMX/AP/Al/HTPB推进剂凝聚相反应、气相反应和燃速的催化作用.实验结果表明,HMX/AP/Al/HTPB推进剂的燃速主要受气相反应速度控制;本研究所选用的铅的化合物在该推进剂系统中的主要催化部位不同.  相似文献   

11.
改性双基推进剂老化燃烧性能实验研究   总被引:2,自引:1,他引:2       下载免费PDF全文
用X射线实时荧屏分析系统对人工加速老化的改性双基推进剂的燃烧性能进行试验研究,结果表明,人工加速老化对双基推进剂的燃速影响不大,但对推进剂的装药结构性能有较大影响。试验发现在70°C的老化温度下24天后,推进剂的结构破坏导致异常燃烧现象明显,辅助试验表明,60°C90天可以认为是该种推进剂的安全界限  相似文献   

12.
The aging behavior of softening composite solid propellant was investigated by measuring its mechanical and ballistic prosperities during prolonged storage at elevated and room temperatures. Accelerated aging was conducted at 65 °C for 231 days while the normal aging was performed at 25 ± 3 °C and relative humidity less than 50% for 8 years. The mechanical properties were obtained from uniaxial tensile tests for the aged propellant specimens while the ballistic properties were determined from static firing tests of subscale motors aged for 112 days at 65 °C. The mechanical results show that the maximum tensile strength and Young's modulus initially increase and subsequently decrease with increasing aging time, while the maximum tensile strain generally increases with increasing aging time. The ballistic properties like burning rate show a small change which cannot affect the ballistic performance. The experimental results show that the changes in the mechanical properties are significant during the aging period, but the burning rate does not undergo significant changes. From this study, it is observed that the propellant ages through a combination of reactions like post-cure, oxidative cross-linking, chain scission, and hydrolysis. The chain scission and the hydrolysis effect are the most significant process, which makes the propellant soft and extendible. The observed aging mechanism has been modeled using an exponential function with two terms which can describe the complex behavior of the aging. By applying Arrhenius equation,the activation energy values were obtained based on the propellant mechanical properties. The shelf life of this propellant formulation at 25 °C is predicted to be 13 years using the modulus as failure criteria and control parameter.  相似文献   

13.
定应变下丁羟推进剂贮存寿命预估   总被引:17,自引:8,他引:9       下载免费PDF全文
采用高温加速老化法,研究了中燃速丁羟推进剂在受力(15%定应变)状态下力学性能变化,预体了推进剂的受力与非受力(0%应变)状态下贮存寿命。结果表明:定应变的作用对推进剂的贮存寿命影响较大,推进剂在受力状态下的贮存寿命比非受力条件下的贮存寿命缩短了4年左右。  相似文献   

14.
加速度对固体火箭发动机内弹道性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
用片型装药火箭发动机和含铝复合推进剂,研究了加速度对固体火箭发动机内弹道性能的影响。研究结果表明,在加速度70g的条件下,2010推进剂的平均效应燃速比r^-a/r^0高达1.515,固体火箭发动机的内弹道性能呈现明显的变化。该项研究对发动机设计有实际意义。  相似文献   

15.
The aim of this study is to perform structural analysis of a solid propellant rocket motor using the finite element method and to determine the effects of aging on the analysis results. Thermal and pressure loadings occurring during the shipping, storing and firing are considered to be the most critical in determining long-term behavior of the motor. Stress and strain distribution in the rocket motor under these loading conditions are determined. Maximum hoop strain at the surface of the propellant and bond stresses at the interface between the liner and the insulator are evaluated as indicators of cracking in the propellant grain and debonding at the liner–insulator interface. The analyses are performed for both unaged and aged propellants. The results can be used to estimate the service life of the motor.  相似文献   

16.
HTPB推进剂贮存寿命的理论预估   总被引:3,自引:2,他引:1       下载免费PDF全文
以HTPB推进剂化学老化机理及其氧化反应动力学为依据,导出了推进剂应变保留值与贮存老化时间的关系,由推进剂中氧化剂AP低温分解反应和HTPB固化体经反应的动力学参数,计算出了在不同应变保留值时的推进剂的贮存寿命。当推进剂的应变保留值在30%~50%之间时,其贮存寿命的理论计算值与高温加速老化实验值之间的相对误差小于16%。  相似文献   

17.
超高燃速推进剂的燃速催化剂研制   总被引:2,自引:0,他引:2       下载免费PDF全文
合成了三种含铜或/和铅的有机金属化合物燃速催化剂PAC、PAPC和PAP,它们对AP微孔固体推进剂燃烧有显著催化作用,其中PAC和PAPC能使该推进剂在5MPa~25MPa压力范围内达到1m/s以上的超高燃速,燃烧较为平稳。通过热分析和实测燃速等探讨了催化剂对推进剂催化燃烧的主要作用阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号