首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
30cm离子推力器栅极组件热应力及热形变计算模拟   总被引:8,自引:7,他引:1       下载免费PDF全文
孙明明  张天平  王亮  吴先明 《推进技术》2016,37(7):1393-1400
为了降低30cm口径离子推力器栅极组件工作时的热形变位移,采用材料力学分析以及有限元分析方法研究了边缘不约束和边缘约束下的栅极组件热应力分布以及热形变位移,提出了相关的热应力降低措施并进行了模拟验证。结果显示,将栅极等效为圆形平板且边缘无约束时,水平方向的拉伸应力引起的最大热形变位移约为0.3mm,栅极几何中心处的热应力最大,约为1.5MPa,法线方向的热形变位移基本为0;将栅极等效为圆形平板且边缘约束时,最大挠度出现在结构几何中心处,约为1.255mm,水平方向最大拉伸形变量为0.01mm,理论计算值与仿真结果基本一致,且真实栅极拱形结构在此约束条件下会产生更大的热形变位移,可能导致栅极的聚焦性能变差以及栅极之间的短路现象;热设计改进措施验证表明降低结构的整体温度并且更换热膨胀系数较低的材料是减小热形变位移的较好措施。  相似文献   

2.
为了对不同环境温度造成的30cm离子推力器三栅极组件离子刻蚀速率的影响进行分析,采用有限元仿真与试验验证相结合的方法,计算并试验验证了不同环境温度下的三栅极组件热平衡温度以及栅极间的相对位移变化,采用流体方法模拟了不同环境温度(20℃,-70℃,-120℃和-170℃)对三栅极组件的刻蚀影响,并结合短期寿命试验结果进行验证。结果显示:随着环境温度的降低,屏栅达到温度平衡的时间无变化,而加速栅温度平衡所需的时间则明显延长,20℃下的屏栅和加速栅热仿真结果与室温下推力器热平衡试验结果比对误差分别为7%和5%;其次环境温度的降低,会导致屏栅与加速栅的中心间距和边缘间距均缩小,而加速栅和减速栅的边缘间距却逐渐拉大,仿真结果与栅极热间距摄像测量结果符合性较好;根据三栅极组件的栅孔径扩大率随环境温度变化的计算结果来看,加速栅中心和减速栅边缘是离子刻蚀的主要位置,轰击至加速栅中心区域的离子数速率约是边缘的3倍,而轰击至减速栅边缘区域的离子数速率是中心的2.5倍,且环境温度的降低对加速栅中心区域离子刻蚀的影响更为强烈;经2100h的寿命试验验证,仿真结果与试验结果基本符合,误差经分析认为主要来自于流体方法的参数设置过程以及栅孔壁面均匀刻蚀的计算假设。  相似文献   

3.
为了研究30cm离子推力器三栅极组件设计参数对预估寿命的影响,在完成失效模式分析的基础上,通过PIC-MCC方法对离子推力器三栅极组件的离子溅射速率进行了计算,建立起栅孔二维寿命预估模型,并针对栅极设计参数对预估寿命的影响进行研究。结果显示:导致三栅极组件的主要失效模式为5kW高功率模式下的离子直接轰击所造成的栅极早期结构失效,且减速栅的过快离子溅射腐蚀成为影响三栅极组件寿命的关键,而不同工作模式不会产生新的失效方式,仅影响栅极的离子溅射速率以及寿命;在现有三栅极设计参数条件下,当推力器工作时,栅极引出的离子束流处于明显欠聚焦状态,且加速栅寿命预估值约为9062h,而减速栅约为2642h;通过PIC-MCC方法得到的栅极三个关键设计参数对寿命的影响模拟结果显示,降低加速栅电压对提升减速栅寿命的作用较小;缩小加速栅与减速栅冷态间距后,离子溅射速率会随着冷态间距的缩小逐渐降低,冷态间距由1mm缩小至0.6mm后,减速栅在5kW工况下的工作寿命可提升至10726h,且经试验验证该间距可满足推力器力学环境试验要求;缩小屏栅孔径对改变离子束流引出形状具有显著作用,单孔束流发散角度随着屏栅孔径的缩小出现了明显降低,且束流离子几乎不会再直接轰击至减速栅上游区域,当屏栅孔径由1.9mm缩小至1.6mm后,减速栅工作寿命可提升至9259h;分析结果对后续开展栅极组件的寿命优化设计提供了参考。  相似文献   

4.
孙明明  郑艺  杨俊泰  史楷 《推进技术》2021,42(3):711-720
栅极间距变化是影响离子推力器在轨环境下从冷态条件正常点火启动的重要因素,同时也决定了离子推力器的在轨工作时机和热控实施策略。本文采用有限元仿真与地面热平衡试验验证相结合的方法,建立起30cm离子推力器有限元分析模型并进行了模型校验,之后对离子推力器在轨受太阳光照影响的栅极温度场分布和间距变化,以及推力器在5kW工况下的三个典型温度点所对应的栅极间距变化进行了仿真分析,最后考虑了主动热控干预对推力器最恶劣工作点的栅极间距变化影响。结果显示:纯太阳光照影响下的栅极组件存在周期性温度变化,栅极最大温差可达到100℃,栅间距缩小量在0.06mm~0.16mm范围内波动;在太阳光照基础上实施60W的主动热控后,栅极最大温差降低至60℃,栅间距缩小量波动范围则变为0~0.03mm;栅极最高温度点和最低温度点分别是推力器冷态启动最容易和最困难的两个工作时机点,两点所对应的启动后屏栅和加速栅最小间距分别为0.22mm和0.04mm;在10W、70W和120W的热控加热功率下,从最低温度点启动后的屏栅和加速栅最小间距分别为0.06mm、0.20mm和0.29mm;采取主动热控措施能够有效降低推力器工作过程中的栅极热形变位移峰值,且加热功率为120W即温控点温度为50℃的主动热控可以满足30cm离子推力器在轨冷态启动时的0.25mm安全栅极间距要求。  相似文献   

5.
针对电子反流失效模式主导的三栅极离子推力器加速寿命试验加速应力选择及长寿命优化,需要开展影响参数的敏感性对比研究,采用Hybrid-PIC-MCC(Particle in Cell- Monte Carlo Collision)方法,构建了三栅极系统数值仿真模型。采用模型研究了地面真空舱本底压力、屏栅电压、加速栅电压、屏栅与加速栅间距、屏栅上游等离子体密度和放电室工质利用率等参数的影响敏感度对比。研究结果显示真空舱本底压力可以作为加速寿命试验的首选加速应力,在推力器结构和工作本征参数中工质利用率为最敏感应力,其次是屏栅电压、屏栅上游等离子体密度、加速栅电压、屏栅和加速栅间距。研究结果为三栅极离子推力器地面加速寿命试验验证方案设计和长寿命优化设计提供了数据支持。  相似文献   

6.
贾艳辉  王聪  李娟  耿海  郭宁  杨浩  王亮 《推进技术》2020,41(1):140-148
电子反流失效模式是离子推力器关键失效模式之一,决定推力器工作寿命。为明确各参数对电子反流失效模式的影响程度,确定加速应力,为地面加速寿命实验验证方案和长寿命优化设计提供数据支持,采用Hybrid-PIC-MCC (Particle in Cell-Monte Carlo Collision)方法,构建了三栅极系统数值仿真模型。采用模型研究了地面真空舱本底压力、屏栅电压、加速栅电压、屏栅与加速栅间距、屏栅上游等离子体密度和放电室工质利用率等参数的影响敏感度对比。研究结果显示,真空舱本底压力可以作为加速寿命试验的首选加速应力,在推力器结构和工作本征参数中工质利用率为最敏感应力,其次是屏栅电压、屏栅上游等离子体密度、加速栅电压、屏栅和加速栅间距。  相似文献   

7.
为了研究电子回旋共振推力器在搭载火箭升空过程中,过载和振动环境对栅极带来的影响,采用有限元分析软件建立了10 cm C/C复合材料栅极的有限元分析模型,计算分析了不同C/C复合材料栅极的力学性能、频率响应和振动模态。结果表明:20g过载下,栅极的最大变形量为6.12×10-4mm;在5~800 Hz激振下,栅极频率响应的最大位移为2.3×10-6mm;过载对栅极的影响要大于振动对它的影响,但是这两个值都在安全门限内;综合分析栅极频响和模态分析的计算结果,栅极仅在其第一阶模态处于外界激振发生共振。  相似文献   

8.
为了明确国内200 mm口径离子推力器放电室出口(即栅极上游附近)离子密度径向分布,采用实验与数值仿真相结合的方法对LIPS-200推力器放电室出口离子密度进行研究。应用法拉第筒分别测试推力器栅极下游50mm和100mm位置处束流特性,结合经验模型计算出栅极出口(z=0mm)束流离子径向分布。在此基础上,通过栅极数值模拟仿真,分析出栅极系统透过率随栅孔电流变化关系,进而反推计算出放电室出口离子密度径向分布。结果显示:放电室出口离子密度平均值约为9.0×10~(17)m~(-3),最大值约为1.54×10~(18)m~(-3),最小值约为4.6×10~(17)m~(-3);离子密度径向分布具有较好的中心轴对称性,离子密度从中心处沿着径向先缓慢减小,在径向位置约为50mm时出现快速下降;对比放电室出口与栅极出口离子密度径向分布发现,中心位置两者相差最大,边缘处相差最小。  相似文献   

9.
为了分析射频离子推力器热特性,建立了射频离子推力器整体热模型,基于二维流体模型,对11cm射频离子推力器开展了放电室等离子体仿真,获得了电子温度、电势分布等关键参数;以等离子体仿真结果和实测束电流为输入,获得了各热源的热通量;通过有限元计算获得了关键部组件的温度分布,与实验结果进行了对比分析。研究结果显示:放电室内电子温度约为3.6eV~3.9eV,等离子体电势最高20V,发热损耗主要来自带电粒子轰击放电室壁面和栅极造成的能量沉积、激发原子的热辐射以及射频线圈自身的发热损耗,温度仿真与实测结果一致性良好,最大误差7%,仿真得到的温度分布可以作为输入参数进一步研究栅极受热形变及对束流的影响。  相似文献   

10.
为了分析射频离子推力器热特性,建立了射频离子推力器整体热模型,基于二维流体模型,对11cm射频离子推力器开展了放电室等离子体仿真,获得了电子温度、电势分布等关键参数;以等离子体仿真结果和实测束电流为输入,获得了各热源的热通量;通过有限元计算获得了关键部组件的温度分布,与实验结果进行了对比分析。研究结果显示:放电室内电子温度约为3.6eV~3.9eV,等离子体电势最高20V,发热损耗主要来自带电粒子轰击放电室壁面和栅极造成的能量沉积、激发原子的热辐射以及射频线圈自身的发热损耗,温度仿真与实测结果一致性良好,最大误差7%,仿真得到的温度分布可以作为输入参数进一步研究栅极受热形变及对束流的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号