首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 19 毫秒
1.
为了对不同环境温度造成的30cm离子推力器三栅极组件离子刻蚀速率的影响进行分析,采用有限元仿真与试验验证相结合的方法,计算并试验验证了不同环境温度下的三栅极组件热平衡温度以及栅极间的相对位移变化,采用流体方法模拟了不同环境温度(20℃,-70℃,-120℃和-170℃)对三栅极组件的刻蚀影响,并结合短期寿命试验结果进行验证。结果显示:随着环境温度的降低,屏栅达到温度平衡的时间无变化,而加速栅温度平衡所需的时间则明显延长,20℃下的屏栅和加速栅热仿真结果与室温下推力器热平衡试验结果比对误差分别为7%和5%;其次环境温度的降低,会导致屏栅与加速栅的中心间距和边缘间距均缩小,而加速栅和减速栅的边缘间距却逐渐拉大,仿真结果与栅极热间距摄像测量结果符合性较好;根据三栅极组件的栅孔径扩大率随环境温度变化的计算结果来看,加速栅中心和减速栅边缘是离子刻蚀的主要位置,轰击至加速栅中心区域的离子数速率约是边缘的3倍,而轰击至减速栅边缘区域的离子数速率是中心的2.5倍,且环境温度的降低对加速栅中心区域离子刻蚀的影响更为强烈;经2100h的寿命试验验证,仿真结果与试验结果基本符合,误差经分析认为主要来自于流体方法的参数设置过程以及栅孔壁面均匀刻蚀的计算假设。  相似文献   

2.
孙明明  郑艺  杨俊泰  史楷 《推进技术》2021,42(3):711-720
栅极间距变化是影响离子推力器在轨环境下从冷态条件正常点火启动的重要因素,同时也决定了离子推力器的在轨工作时机和热控实施策略。本文采用有限元仿真与地面热平衡试验验证相结合的方法,建立起30cm离子推力器有限元分析模型并进行了模型校验,之后对离子推力器在轨受太阳光照影响的栅极温度场分布和间距变化,以及推力器在5kW工况下的三个典型温度点所对应的栅极间距变化进行了仿真分析,最后考虑了主动热控干预对推力器最恶劣工作点的栅极间距变化影响。结果显示:纯太阳光照影响下的栅极组件存在周期性温度变化,栅极最大温差可达到100℃,栅间距缩小量在0.06mm~0.16mm范围内波动;在太阳光照基础上实施60W的主动热控后,栅极最大温差降低至60℃,栅间距缩小量波动范围则变为0~0.03mm;栅极最高温度点和最低温度点分别是推力器冷态启动最容易和最困难的两个工作时机点,两点所对应的启动后屏栅和加速栅最小间距分别为0.22mm和0.04mm;在10W、70W和120W的热控加热功率下,从最低温度点启动后的屏栅和加速栅最小间距分别为0.06mm、0.20mm和0.29mm;采取主动热控措施能够有效降低推力器工作过程中的栅极热形变位移峰值,且加热功率为120W即温控点温度为50℃的主动热控可以满足30cm离子推力器在轨冷态启动时的0.25mm安全栅极间距要求。  相似文献   

3.
针对电子反流失效模式主导的三栅极离子推力器加速寿命试验加速应力选择及长寿命优化,需要开展影响参数的敏感性对比研究,采用Hybrid-PIC-MCC(Particle in Cell- Monte Carlo Collision)方法,构建了三栅极系统数值仿真模型。采用模型研究了地面真空舱本底压力、屏栅电压、加速栅电压、屏栅与加速栅间距、屏栅上游等离子体密度和放电室工质利用率等参数的影响敏感度对比。研究结果显示真空舱本底压力可以作为加速寿命试验的首选加速应力,在推力器结构和工作本征参数中工质利用率为最敏感应力,其次是屏栅电压、屏栅上游等离子体密度、加速栅电压、屏栅和加速栅间距。研究结果为三栅极离子推力器地面加速寿命试验验证方案设计和长寿命优化设计提供了数据支持。  相似文献   

4.
贾艳辉  王聪  李娟  耿海  郭宁  杨浩  王亮 《推进技术》2020,41(1):140-148
电子反流失效模式是离子推力器关键失效模式之一,决定推力器工作寿命。为明确各参数对电子反流失效模式的影响程度,确定加速应力,为地面加速寿命实验验证方案和长寿命优化设计提供数据支持,采用Hybrid-PIC-MCC (Particle in Cell-Monte Carlo Collision)方法,构建了三栅极系统数值仿真模型。采用模型研究了地面真空舱本底压力、屏栅电压、加速栅电压、屏栅与加速栅间距、屏栅上游等离子体密度和放电室工质利用率等参数的影响敏感度对比。研究结果显示,真空舱本底压力可以作为加速寿命试验的首选加速应力,在推力器结构和工作本征参数中工质利用率为最敏感应力,其次是屏栅电压、屏栅上游等离子体密度、加速栅电压、屏栅和加速栅间距。  相似文献   

5.
离子推力器栅极系统电子反流阈值的数值分析   总被引:9,自引:9,他引:0  
阻止束流等离子体中电子反流到加速栅上游区域是离子推力器加速栅负电压的主要作用之一,能够阻止电子反流的加速栅电压最小值称为电子反流阈值。加速栅电压的选择直接影响到离子推力器的工作性能和运行寿命,电子反流阈值电压是确定加速栅电压的重要参考参数。基于PIC方法计算了20cm氙离子推力器加速栅电子反流阈值,并分析了加速栅孔径、栅间距、单孔引出束流电流大小对加速栅电子反流阈值电压的影响,计算结果与试验测量值符合较好。该数值模型为加速栅参数的选择和降低电子反流失效风险方法提供了参考,为下一步电子反流现象对加速栅寿命的预测分析奠定了基础。  相似文献   

6.
改善离子推力器束流均匀性的方法   总被引:5,自引:5,他引:0  
郑茂繁  江豪成 《推进技术》2011,32(6):762-765,775
离子推力器的束流分布,直接影响离子推力器离子光学系统(亦称栅极组件)的性能和寿命。通过对离子推力器离子光学系统的改进和放电室磁场的优化,使束流均匀性系数R值达到0.7左右。离子推力器束流分布均匀性的有效提高,有助于改善离子光学系统的受热分布,降低离子光学系统的温度,并能减小其温度差,使离子光学系统的热应力和热变形降低,进而延长离子推力器的寿命。  相似文献   

7.
离子推力器加速栅寿命概率性分析   总被引:6,自引:5,他引:1  
交换电荷离子对加速栅极的溅射腐蚀是离子推力器的关键失效模式之一,基于交换电荷离子对加速栅溅射腐蚀的物理机理,对离子推力器加速栅工作寿命进行了概率性建模。利用该模型对20cm Xe离子推力器加速栅寿命和其达到预期寿命的可靠度进行了评估。结果显示加速栅的寿命近似服从高斯分布,当推力器工作环境压力近似6.7×10-3Pa时,加速栅工作寿命达到3kh的可靠度为0.9352。  相似文献   

8.
20cm口径离子推力器栅极组件结构性能分析   总被引:2,自引:2,他引:0       下载免费PDF全文
孙明明  刘永明  王亮 《推进技术》2016,37(3):585-592
为了对20cm口径离子推力器栅极组件开展结构性能模拟分析,通过材料力学分析方法对栅极组件进行结构等效处理并进行验证,利用ANSYS有限元软件得到推力器的模态分析结果和栅极组件的模态振型,并开展基频扫描试验验证模态分析结果的正确性,最后模拟了推力器在1600g冲击载荷作用时,栅极组件的应力分布和形变结果。结果显示:将栅极组件等效为拱高不变且无孔的结构后,屏栅等效弹性模量为20.79GPa,加速栅等效弹性模量为89.43GPa;栅极组件表面的螺栓预应力大约在20~33MPa范围之间;模态分析结果显示,大于320Hz的振动频率时,栅极组件会出现较大的结构变化;通过10~1000Hz的基频扫描试验得到推力器基频在168Hz,分析结果(185.23Hz)相比误差约10%;1600g的冲击载荷作用下,栅极组件边缘处最大形变达到约0.27mm,且表面边缘处的应力相对中心处较大,更容易发生破裂。  相似文献   

9.
离子推力器的极限寿命最终取决于栅极的极限寿命。针对LIPS-200离子推力器延长寿命到20000h以上的工程应用需求,在分析离子推力器极限寿命所对应关键失效模式及磨损机理的基础上,基于加速电压能够有效调节关键失效模式发展进程的工作机制,提出了具有普适性的离子推力器栅极极限寿命优化的恒定加速电压方法和步进调节加速电压方法。结合LIPS-200离子推力器寿命试验的过程及最终结果数据,在完全继承推力器现有技术状态和成熟度的前提下,采用恒定加速电压方法可以将推力器的极限寿命从现有的14649h提高到17300h,采用步进调节加速电压方法可以将推力器极限寿命提高到20400h,从而实现LIPS-200延长寿命目标。  相似文献   

10.
为了明确国内200 mm口径离子推力器放电室出口(即栅极上游附近)离子密度径向分布,采用实验与数值仿真相结合的方法对LIPS-200推力器放电室出口离子密度进行研究。应用法拉第筒分别测试推力器栅极下游50mm和100mm位置处束流特性,结合经验模型计算出栅极出口(z=0mm)束流离子径向分布。在此基础上,通过栅极数值模拟仿真,分析出栅极系统透过率随栅孔电流变化关系,进而反推计算出放电室出口离子密度径向分布。结果显示:放电室出口离子密度平均值约为9.0×10~(17)m~(-3),最大值约为1.54×10~(18)m~(-3),最小值约为4.6×10~(17)m~(-3);离子密度径向分布具有较好的中心轴对称性,离子密度从中心处沿着径向先缓慢减小,在径向位置约为50mm时出现快速下降;对比放电室出口与栅极出口离子密度径向分布发现,中心位置两者相差最大,边缘处相差最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号