首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
文章提出了 1种基于双边截断的双参数海上风电站 SAR图像 CFAR检测器 DTCS-TPCFAR,目的是提高在具有多个目标海上区域和石油泄漏区域等环境下对海上风电站的检测性能。DTCS-TPCFAR所提出的双边截断杂波的方法,能够同时消除高强度和低强度异常值的干扰,同时保留真实的杂波样本。通过使用最大似然估计计算双边截断后样本的均值和标准差,然后通过这 2个参数估计值计算出截断阈值,最后再结合指定的虚警率(Probability of False Alarm,PFA)来对测试单元(Test Cell,TC)进行判断,完成最终的目标检测。这也是首次将 CFAR检测器用于检测海上风电站。文章通过 Sentinel-1数据集来验证该方法的有效性。实验结果表明,文章所提出的算法在相同指定虚警率下,具有更高的检测率(Detection Rate,DR)和更低的误报率(False Alarm Rate,FAR)。  相似文献   

2.
It is necessary for automatic detection radars to be adaptive to variations in background clutter in order to maintain a constant false alarm rate (CFAR). A CFAR based on an ordered statistic technique (OS CFAR) has some advantages over the cell-averaging technique (CA CFAR), especially in clutter edges or multiple target environments; unfortunately the large processing time required by this technique limits its use. The authors present two new OS CFARs that require only ahlf the processing time. One is an ordered statistic greatest of CFAR (OSGO), while the other is an ordered statistic smallest of CFAR (OSSO). The OSGO CFAR has the advantages of the OS CFAR with only a negligible increment to the CFAR loss  相似文献   

3.
针对传统的双参数恒虚警率(Constant False Alarm Rate,CFAR)算法存在的虚警率高、实现过程繁琐、算法执行效率低等问题,提出了一种改进型的CFAR检测算法。该算法根据SAR图像的统计直方图,对可疑的目标像素进行预筛选,再用2个滑动窗口对像素进行判别。改进型的CFAR检测算法简化了原检测算法的结构,降低了检测结果的虚警率,提高了算法的计算效率,并在国际公开的雷达数据集上进行软件与DSP硬件的应用验证,测试表明该算法的有效性。  相似文献   

4.
钱镜洁  曹力 《飞机设计》2009,29(4):45-51
机载合成孔径雷达(SAR)图像可用于检测识别机场跑道.由于SAR图像包含大量噪声,算法抗噪性能对于SAR图像处理很重要.2-D阈值方法的分割效果比传统的一维方法要好,特别是对受噪声影响的图像.然而,2-D阈值方法耗时长,难以实用.因此,本文在现有的2-D熵迭代分割算法的基础上提出了一种基于二维直方图统计特点的最大熵阈值分割算法.通过大量试验证明,本文提出的方法不仅获得了理想的分割效果,而且进一步提高了二维阈值选取速度.  相似文献   

5.
In this article, a new reduced-dimensional adaptive processing algorithm based on joint pixels sum-difference data for clutter rejection is proposed. The sum-difference data are obtained by orthogonal projection of the joint pixels data of different synthetic aperture radar (SAR) images generated by a multi-satellite radar system. In the sense of statistical expectation, the sum-differ- ence data contain the common and different information of the SAR images. Therefore, the objective of clutter cancellation can be achieved by adaptive processing. Moreover, based on the residual image after clutter rejection, statistical analysis of constant false-alarm rate (CFAR) detection of moving targets is also presented. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm even with heterogeneous clutter and image co-registration error.  相似文献   

6.
韦北余  朱岱寅  吴迪 《航空学报》2015,36(5):1585-1595
对超高频(UHF)波段多通道合成孔径雷达(SAR)动目标检测技术进行研究,解决了长相干积累时间导致动目标在方位向散焦严重的问题。采用分块自聚焦技术对多通道SAR地面移动目标指示(GMTI)系统自适应杂波抑制后的SAR图像进行处理,改善杂波抑制后的SAR图像中动目标的聚焦情况,增强动目标与周围剩余杂波的对比度,进而提高恒虚警率(CFAR)检测的性能。与传统杂波抑制后直接进行CFAR检测方法相比较,该方法降低了检测虚警概率。实测数据处理结果显示动目标的信杂比明显提高,动目标方位向聚焦成功,证明了该方法的有效性。  相似文献   

7.
SAR image formation via semiparametric spectral estimation   总被引:1,自引:0,他引:1  
A new algorithm, referred to as the SPAR (Semiparametric) algorithm, is presented herein for target feature extraction and complex image formation via synthetic aperture radar (SAR). The algorithm is based on a flexible data model that models each target scatterer as a two-dimensional (2-D) complex sinusoid with arbitrary unknown amplitude and constant phase in cross-range and with constant amplitude and phase in range. By attempting to deal with one corner reflector, such as one dihedral or trihedral, at a time, the algorithm can be used to effectively mitigate the artifacts in the SAR images due to the flexible data model. Another advantage of SPAR is that it can be used to obtain initial conditions needed by other parametric target feature extraction methods to reduce the total amount of computations needed. Both numerical and experimental examples are provided to demonstrate the performance of the proposed algorithm  相似文献   

8.
Radar CFAR Thresholding in Clutter and Multiple Target Situations   总被引:9,自引:0,他引:9  
Radar detection procedures involve the comparison of the received signal amplitude to a threshold. In order to obtain a constant false-alarm rate (CFAR), an adaptive threshold must be applied reflecting the local clutter situation. The cell averaging approach, for example, is an adaptive procedure. A CFAR method is discussed using as the CFAR threshold one single value selected from the so-called ordered statistic (this method is fundamentally different from a rank statistic). This procedure has some advantages over cell averaging CFAR, especially in cases where more than one target is present within the reference window on which estimation of the local clutter situation is based, or where this reference window is crossing clutter edges.  相似文献   

9.
Standard radar image formation techniques waste computational resources by full resolving all areas of the scene, even regions of benign clutter. We introduce a multiscale prescreener algorithm that runs as part of the image formation processing step for ultrawideband (UWB) synthetic aperture radar (SAR) systems. The prescreener processes intermediate radar data generated by a quadtree backprojection image former. As the quadtree algorithm iterates, it is resolving increasingly finer subpatches of the scene. After each quadtree stage, the prescreener makes an estimate of the signal-to-background ratio of each subpatch and applies a constant false alarm rate (CFAR) detector to decide which ones might contain a target of interest. Whenever the prescreener determines that a subpatch is not near a detection, it cues the image former to terminate further processing of that subpatch. Using a small database of UWB radar field data, we demonstrate that the prescreener is able to decrease the overall computational load of the image formation process. We also show that the new multiscale prescreener method produces fewer false alarms than the conventional two-parameter CFAR prescreener applied to the completely formed image  相似文献   

10.
Rohling has developed a constant false alarm rate (CFAR) technique based on ordered statistics of the reference cells. An extension of his technique is presented that maintains a CFAR for two-parameter distributions, with both mean power and skewness variable. The new method is therefore more robust, but has higher CFAR loss than the single-parameter technique.  相似文献   

11.
SAR imaging of moving targets   总被引:6,自引:0,他引:6  
A method of forming synthetic aperture radar (SAR) images of moving targets without using any specific knowledge of the target motion is presented. The new method uses a unique processing kernel that involves a one-dimensional interpolation of the deramped phase history which we call keystone formatting. This preprocessing simultaneously eliminates the effects of linear range migration for all moving targets regardless of their unknown velocity. Step two of the moving target imaging technique involves a two-dimensional focusing of the movers to remove residual quadratic range migration errors. The third and last step removes cubic and higher order defocusing terms. This imaging technique is demonstrated using SAR data collected as part of DARPA's Moving Target Exploitation (MTE) program  相似文献   

12.
Superresolution HRR ATR with high definition vector imaging   总被引:1,自引:0,他引:1  
A new 1-D template-based automatic target recognition (ATR) algorithm is developed and tested on high range resolution (HRR) profiles formed from synthetic aperture radar (SAR) images of targets taken from the Moving and Stationary Target Acquisition and Recognition (MSTAR) data set. In this work, a superresolution technique known as High Definition Vector Imaging (HDVI) is applied to the HRR profiles before the profiles are passed through ATR classification. The new I-D ATR system using HDVI demonstrates significantly improved target recognition compared with previous I-D ATR systems that use conventional image processing techniques. This improvement in target recognition is quantified by improvement in probability of correct classification (PCC). More importantly, the application of HDVI to HRR profiles helps to maintain the same ATR performance with reduced radar resource requirements  相似文献   

13.
Optimal speckle reduction in polarimetric SAR imagery   总被引:9,自引:0,他引:9  
Speckle is a major cause of degradation in synthetic aperture radar (SAR) imagery. With the availability of fully polarimetric SAR data, it is possible to use the three complex elements (HH, HV, VV) of the polarimetric scattering matrix to reduce speckle. The optimal method for combining the elements of the scattering matrix to minimize image speckle is derived, and the solution is shown to be a polarimetric whitening filter (PWF). A simulation of spatially correlated, K-distributed, fully polarimetric clutter is then used to compare the PWF with other, suboptimal speckle-reduction methods. Target detection performance of the PWF, span, and single-channel |HH|2 detectors is compared with that of the optimal polarimetric detector (OPD). A novel, constant-false-alarm-rate (CFAR) detector (the adaptive PWF) is as a simple alternative to the OPD for detecting targets in clutter. This algorithm estimates the polarization covariance of the clutter, uses the covariance to construct the minimum-speckle image, and then tests for the presence of a target. An exact theoretical analysis of the adaptive PWF is presented; the algorithm is shown to have detection performance comparable with that of the OPD  相似文献   

14.
Optimal polarimetric processing for enhanced target detection   总被引:3,自引:0,他引:3  
The results of a study of several polarimetric target detection algorithms are summarized. The algorithms were tested using real target-in-clutter data collected by the Lincoln Laboratory 35 GHz synthetic aperture radar (SAR) sensor. Fully polarimetric measurements (HH, HV, VV) are processed into intensity imagery using adaptive and nonadaptive polarimetric whitening filters (PWFs). Then a two-parameter constant false alarm rate (CFAR) detector is run over the imagery to detect the targets. Nonadaptive PWF processed imagery is shown to provide better protection performance than either adaptive PWF processed imagery or single-polarimetric-channel HH imagery. In addition, nonadaptive PWF processed imagery is shown to be visually clearer than adaptive processed imagery  相似文献   

15.
In high-resolution imaging, weak target pixel amplifiers may not be detected in the presence of clutter containing strong nonhomogeneities, when conventional approaches are used. The authors describe a constant false alarm rate (CFAR) approach that avoids the elimination of these significant target returns. The nonhomogeneous clutter as well as the weak target components are detected with this approach. The targets could then be discriminated from the homogeneities by discrimination techniques. It is shown how the lower amplitude components of the background noise and homogeneous clutter (which have Rayleigh statistics) can be detected in the presence of strong homogeneous clutter and targets. The average level of the homogeneous component is then determined using these lower-amplitude components. This CFAR approach avoids having a CFAR on the strong nonhomogeneities as well as the homogeneous component. The avoidance is what yields the ability to detect weak target pixel amplitudes  相似文献   

16.
This paper deals with a new synthetic aperture radar (SAR) Processor based on a subspace detector designed for man-made target (MMT) detection. As MMTs are more accurately decribed by a set of canonical elements than with isotropic points, we develop a new algorithm which aims at using new models, instead of the isotropic point model commonly used in SAR processors. A subspace detector matched to canonical elements is included in the SAR processing. The implementation and the optimization of subspace detector SAR (SDSAR) algorithm is described. Simple examples of MMT detection in simulations and real data with a target hidden in a forest show the power of our approach. The SDSAR algorithm is shown to be the first robust and tractable algorithm relying on realistic scattering assumptions about the target.  相似文献   

17.
General analytic expressions are developed for the soft-limited digital pulse compressor (matched filter). This theoretical development is then used for the hardware realization of a two-channel (I,Q), 3-bit-limited digital pulse compressor with a compression ratio of 255: 1. The realized hardware uses state of the art integrated circuit devices. An experimental laboratory setup is described. This setup is used to study hard-limited versus 3-bit-limited matched-filter performance characteristics with the data in the following areas: 1) constant false alarm rate (CFAR) characteristics as a function of threshold settings and noise levels; 2) single target detection characteristics as a function of input signal-to-noise ratio (SNR); and 3) two target performance characteristics: a) the amplitude of a weaker target as a function of target ratio and target overlap; and b) the detection characteristics of a weaker target as a function of weaker target SNR, strong target SNR, and target overlap.  相似文献   

18.
High-resolution SAR imaging with angular diversity   总被引:1,自引:0,他引:1  
We propose to use the APES (amplitude and phase estimation) approach for the spectral estimation of gapped data and synthetic aperture radar (SAR) imaging with angular diversity. A relaxation-based algorithm, referred to as GAPES (Gapped-data APES), is proposed, which includes estimating the spectrum via APES and filling in the gaps via a least squares (LS) fitting. For SAR imaging with angular diversity data fusion, we perform one-dimensional (1-D) windowed fast Fourier transforms (FFTs) in range, use the GAPES algorithm to interpolate the gaps in the aperture for each range, apply 1-D inverse FFTs (IFFTs) and dewindow in range, and finally apply the two-dimensional (2-D) APES algorithm to the interpolated matrix to obtain the 2-D SAR image. Numerical results are presented to demonstrate the effectiveness of the proposed algorithm  相似文献   

19.
3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions   总被引:2,自引:0,他引:2  
The results of three-dimensional (3-D) imaging of a T-72 tank using its angular azimuthal (turntable) and linear elevation synthetic aperture data at X band are presented. This is achieved using an accurate and computationally efficient wavefront (Fourier-based) reconstruction algorithm for elevation and circular (E-CSAR) data. The E-CSAR 3-D images are then used to synthesize 2-D spotlight and stripmap slant plane synthetic aperture radar (SAR) images of the target at a desired range and squint angle. For this purpose, a procedure is introduced that incorporates the spatially varying azimuthal and elevation Doppler signatures of individual reflectors on the target as well as the mean range, azimuth, and elevation of the flight path. Results using the E-CSAR images of the T-72 tank are provided.  相似文献   

20.
A new constant false alarm rate (CFAR) test termed signal-plus-order statistic CFAR (S+OS) using distributed sensors is developed. The sensor modeling assumes that the returns of the test cells of different sensors are all independent and identically distributed In the S+OS scheme, each sensor transmits its test sample and a designated order statistic of its surrounding observations to the fusion center. At the fusion center, the sum of the samples of the test cells is compared with a constant multiplied by a function of the order statistics. For a two-sensor network, the functions considered are the minimum of the order statistics (mOS) and the maximum of the order statistics (MOS). For detecting a Rayleigh fluctuating target in Gaussian noise, closed-form expressions for the false alarm and detection probabilities are obtained. The numerical results indicate that the performance of the MOS detector is very close to that of a centralized OS-CFAR and it performs considerably better than the OS-CFAR detector with the AND or the OR fusion rule. Extension to an N-sensor network is also considered, and general equations for the false alarm probabilities under homogeneous and nonhomogeneous background noise are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号