首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 249 毫秒
1.
用实验方法对浸没在饱和液体中的倾斜加热细管内的自然对流沸腾临界热流密度进行了研究,考察了管径,管长,倾斜角和工质对临界热流密度的影响。实验条件是:管内径从0.9mm到8mm;管长从100mm到400mm;倾斜角从90°到30°。实验工质使用了水和R-11两种液体。本研究中考虑倾斜角对重力的影响,对作者过去提出的用于预示垂直加热管内自然对流沸腾临界热流密度的半理论半经验式进行了修正,修正后的公式能较好的预示本实验结果。   相似文献   

2.
以水-氧化铜纳米颗粒组成的纳米流体为工质, 对底部封闭细小圆管内的沸腾特性以及临界热通量进行了实验研究.结果表明:沸腾时管内纳米流体的浓度不随加热时间长短而改变, 沸腾液体的纳米颗粒除微量吸附在管壁外, 其余全部被蒸汽携带走, 同时吸附层厚度到了一定程度就不再变化.相对于纯水而言, 随着纳米浓度的增加, 纳米流体的沸腾特性有所劣化, 这主要是因为纳米颗粒吸附在管壁上, 减小了壁面粗糙度, 从而减小了液体和壁面的接触角.随着纳米浓度的增加, 纳米流体的临界热通量也随之增加.纳米流体的临界热通量不仅与管长与管径比有关, 而且还与纳米浓度有关.   相似文献   

3.
侧载及加热方位对槽道内临界热流密度影响   总被引:1,自引:0,他引:1  
为了研究侧载以及加热方位对矩形窄缝槽道内临界热流密度特性的影响,在旋转平台上进行了两相流的超重力实验.以蒸馏水为工质,通过改变质量流速、入口温度、侧载大小以及加热方位,获得了发生临界换热现象时的质量流速、实验段压降和壁温的变化趋势,考察了侧载和加热方位对临界热流密度的影响规律,并对侧载下两相流不稳定性进行了简析.实验表明:发生临界换热时,壁温迅速上升,有效加热热流开始减少,关闭加热电源后,实验段压降下降、质量流速回升较明显;侧载以及不同的加热方位对临界热流密度有明显影响;临界热流密度发生前后,蒸汽回流导致进口温度上升,增加了流动的不稳定性.   相似文献   

4.
R141b在矩形微尺度通道中的两相流传热特性   总被引:1,自引:0,他引:1  
设计搭建水力直径分别为1mm和0.5mm的矩形微尺度通道实验台,研究了以R141b型制冷剂作为工质的两相流沸腾传热特性。实验取热流密度为1~16kW/m2、质量流速为111.1~333.3kg/(m2·s)和质量干度为0~1,分析了三者对平均传热系数的影响,探究影响换热的主导因素。结果表明:热流密度较高时,平均传热系数随热流密度增加而减小,流动换热主要受到沸腾传热的影响;当质量流速较大且热流密度较低时,平均传热系数随热流密度增加而有所增长;热流密度较低时,平均传热系数随质量流速变化明显,热流密度升高到一定值后,质量流速对平均传热系数的影响很小;当质量流速处于111.1~333.3kg/(m2·s)时,平均传热系数随质量干度的增加而减小。   相似文献   

5.
建立以等热流密度方式进行试验件加热的沸腾换热试验系统,分别对当量直径为1.28mm和1.59mm锯齿扁管内R134a工质的沸腾换热特性进行研究,试验参数范围:制冷剂质量流率为68.5~305.5kg/(m2·s),工作饱和压力为0.27~0.46 MPa,加热热流密度为9~42kW/m2。试验结果表明:相同结构的通道,当量直径小换热能力更强;热流密度和饱和压力对沸腾换热的影响与一个干度值有关。当干度小于此值时,沸腾换热系数会随着热流密度及饱和压力增大而增大;而当干度大于此值时,沸腾换热系数随着干度增大而急剧下降,热流密度和饱和压力对换热的影响较小;该干度值会随着热流密度或饱和压力增大而逐渐变小。质量流率对沸腾换热的影响与热流密度有关,随着热流密度增大,质量流率的影响趋向大干度区域。通过分析各参数对沸腾换热的影响,建立了一个预测试验工况下微小尺寸锯齿扁管的沸腾换热系数计算经验公式。  相似文献   

6.
针对振动环境对喷雾冷却临界热流密度(CHF)的影响问题,基于静止环境喷雾冷却CHF模型,定义并引入内切偏离因子,建立振动环境下喷雾冷却CHF点基模型,对比3种不同工作模式的影响。结果表明:工作模式1周期平均CHF相对其他两种模式分别提高0.98%和1.17%。该模式下,周期内CHF的变化呈现双峰结构,且后半周期最低热流密度高于前半周期最低热流密度,周期内最小CHF较最大CHF下降3.02%。振动幅度越大,CHF下降越大,1.0mm振幅相对0.2mm振幅条件下的周期平均CHF下降1.74%。分析喷雾锥角的影响,55.8°、90°全位角喷雾锥角相对30°喷雾锥角,平均CHF分别下降4.83%及16.21%。大锥角下,后半周期的峰谷值相较周期内最大CHF下降减小。喷雾锥角小的喷嘴能够减小表面振动对喷雾冷却临界热流密度的恶化。   相似文献   

7.
朱森元 《推进技术》1990,11(4):13-16,75,76
本文是对管内流动的临界热流进行试验研究和理论分析.从沸腾机理分析和应用两相流的相似原理进行处理,我们推导了表达临界热流计算的准则方程.用6种不同的冷却剂,355个实验数据进行修正处理求得了常数A和指数h,m,n的数值.引入一个考虑冷却套缝隙高度变化影响的无因次修正项,上述方程成为计算管内流动临界热流的通用方程  相似文献   

8.
侧载和管径对管内沸腾两相流性能影响实验   总被引:2,自引:2,他引:0  
为研究飞行过程中侧向载荷对不同管径内沸腾两相流流动和传热的影响,在自行搭建的实验平台上做了多次实验.通过对实验段内流体的压差、雷诺数、孔隙率、热流密度及传热系数等参数数据的处理分析,研究了侧载和管径对管内沸腾两相流性能的影响.结果表明,动载越大,管内压差越大,管外散热越强,流体流量越小,空隙率越低,流体得热的热流密度越低.动载荷加强了单相流的表面传热系数;但对于沸腾两相流有一个先抑制再增强最后削弱的过程.管径对雷诺数、压差、孔隙率、散热能力等也有显著的影响,较小的管径流动阻力较大,而换热能力则有所提升.   相似文献   

9.
为提高换热强度、解决设备内部高热流密度散热问题,采用实验方法研究R141b在不同直径(D=0.5mm和1.0mm)水平圆形微通道内的沸腾换热特性,分析了热流密度(q=2.0kW/m~2~47.6kW/m~2)、质量干度(x=0~0.6)、质量流速(G=111.11kg/(m~2·s)~333.33kg/(m~2·s))的变化对平均传热系数h的影响,探究不同情况下影响沸腾换热的主导因素。实验研究表明:平均传热系数h随热流密度q的增加而减小,在不同范围内减小速率有明显差异;热流密度q=2kW/m~2~5kW/m~2时质量流速G对平均传热系数h影响较明显,热流密度较高时质量流速G对换热影响很小;在质量流速G=111.11kg/(m~2·s)~333.33kg/(m~2·s),质量干度x0.3时,平均传热系数h随质量干度x增加而明显下降,在设计微通道换热器时应尽量使R141b处于初始沸腾阶段以获得更好换热效果,并采取一定措施预防干度过高引起的换热恶化。  相似文献   

10.
以液氢膜态沸腾换热为对象,收集并分析文献中涉及液氢膜态沸腾换热的实验数据。通过充分的对比研究,考核3种典型关系式针对液氢膜态沸腾换热预测的适用性与预测精度,建立可预测微重力下液氢膜态沸腾换热热流密度的数学关系式。研究发现:在地面重力下,加热面几何结构、朝向似乎不会对沸腾换热热流密度产生明显影响,均可采用Breen & Westwater公式预测其传热系数;而重力水平会对膜态沸腾换热产生较大影响,且不同重力下换热热流密度之比与重力比之间满足幂指数的关系;依据该关系式可以求解微重力下液氢的膜态沸腾换热热流密度,预测误差控制在15%以内。   相似文献   

11.
等压差条件下多斜孔综合冷效实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
宋坤  张净玉  王嘉玺  刘鸣  何小民 《推进技术》2019,40(8):1842-1849
为了研究不同进气条件对多斜孔气膜冷却的影响规律,采用实验方法,从等压差和等冷气量两个角度分别探讨了孔径d为0.5mm~1mm,开孔率op为0.0245~0.0383,流向倾角α为20°~45°的变化对综合冷效的影响规律。实验结果表明:综合冷效沿流向方向逐渐增大。开孔率和流向倾角不变时,孔径减小,在等单位面积冷气量下,综合冷效显著增加;在等压差条件下,孔径越小,单位面积冷气量越小,综合冷效仍然随之增加。孔径和流向倾角不变,两种进气条件下,综合冷效随开孔率的增加而增加,但等压差条件下增大幅度更高。孔径和开孔率不变,在等冷气量条件下,20°流向倾角综合冷效最高;在等压差条件下,30°流向倾角综合冷效最高。  相似文献   

12.
Zhang  Wang Shuhua  Wang Jing   《中国航空学报》2009,22(4):349-354
This article studies rising velocity of Taylor bubbles and liquid slugs in liquid nitrogen at different axial positions in upward inclined tubes by means of a high speed motion analyzer. The bottom-closed tubes in the experiments are 1.0 m long with an inner diameter of 0.014 m or 0.018 m. The tube inclines upward from 0° to 50° with respect to the normal. Statistical method is used to analyze the data of the Taylor bubble and the liquid slug velocity. Reflecting the effects of the inclination angle on the rising velocity of Taylor bubbles and liquid slugs, the experimental results indicate the similar trend the Taylor bubble velocity and the liquid slug velocity have: it increases first, and then decreases with the increase of the inclination angle. Moreover, with the increase of the inclination angle, the liquid slug velocity becomes greater than Taylor bubble velocity.  相似文献   

13.
Numerical simulations of flow and heat transfer to supercritical RP-3 through the inclined tubes have been performed using LS k–e model embedded in Fluent. The physical properties of RP-3 were obtained using the generalized corresponding state laws based on the fourcomponent surrogate model. Mass flow rate is 0.3 g/s, system pressure is 3 MPa, inlet temperature is 373 K. Inclination of the inclined pipe varied from -90° to 90°, with heat flux varied from 300 k W/m~2 to 400 kW/m~2. Comparison between the calculated result and the experimental data indicates the range of error reasonable. The results of ±45° show that temperature inhomogeneity in inclined pipe produce the secondary flow in its cross section due to the buoyancy force. Depending on the strength of the temperature inhomogeneity, there will be two different forms of secondary flow and both contribute to the convective heat transfer in the pipe. The secondary flow intensity decreases when the inhomogeneity alleviates and thermal acceleration will play a leading role. It will have a greater impact on the turbulent flow to affect the convective heat transfer in the pipe. When changing the inclination, it affects the magnitude of the buoyant component in flow direction. The angle increases, the buoyancy component decreases. And the peak temperature of wall dominated by the secondary flow will move forward and increase in height.  相似文献   

14.
不同偏角多斜孔壁气膜冷却绝热温比研究   总被引:9,自引:6,他引:3       下载免费PDF全文
用传热传质类比实验的方法,研究了不同偏角多斜孔壁气膜冷却绝热温比,多斜孔壁由多斜孔实验板模拟。多斜孔实验板中,孔排列方式均为叉排,小孔与板表面夹角均为30°,偏角从0°变化至50°,孔排距比与孔间距比基本相等。研究结果揭示了不同孔偏角对多斜孔壁气膜冷却绝热温比的影响。  相似文献   

15.
为了获得带斜孔肋大宽高比矩形通道的强化传热特性,并寻求最佳的孔排倾斜角度,调节孔排倾斜角度和通道雷诺数,使其分别在0°~30°和3×104~9×104范围内变化,通过数值计算系统分析了通道摩擦因数和带肋壁努塞尔数等参数的变化规律.研究发现:相比于常规肋片,新型斜孔肋有效改善了肋片后方紧邻肋片的局部区域的壁面换热,并降低通道的摩擦因数,但传热增强因子有所减小;随着孔排倾斜角度的增大,通道的相对摩擦因子单调升高,传热增强因子则呈现出先升高后降低的变化过程,因此存在着最优孔排倾斜角度为15°,此时斜孔肋的强化传热综合指标达到最大值;随着通道雷诺数的增大,斜孔肋通道的摩擦因数小幅减小,换热则逐渐增强.   相似文献   

16.
搭建适用于多种结构微小通道的沸腾换热试验系统,研究了制冷剂R134a在当量直径分别为0.63mm和0.72mm的多孔扁管微小通道内的沸腾换热特性。试验参数包括制冷剂质量流率为82~621kg/(m2·s),饱和压力为0.22~0.63MPa,干度为0~1;采用等热流密度方式加热,热流密度范围为9.7~64kW/m2。结果表明:R134a在扁管内沸腾换热中,当干度在0~0.6区间时,微小通道的传热系数明显高于常规通道,换热类型主要为核态沸腾,传热系数随热流密度和饱和压力的增大而增大,与质量流率关系不大;当干度大于0.6之后,传热系数随着干度的增大急剧减小,且在此干度区间,传热系数受热流密度和饱和压力影响较小,而受质量流率的影响相对较大。利用该结论和公开文献中R134a沸腾换热试验数据对Gungor-Winterton公式进行改进,改进后的公式对所有试验点的平均相对误差为-1.17%,平均绝对误差为19.24%,预测精度有了明显提高。   相似文献   

17.
倾斜微槽道热管中纳米流体的应用   总被引:1,自引:1,他引:0  
鲍然  刘振华 《航空动力学报》2010,25(6):1271-1276
为了研究热管倾斜角度和压力对热管蒸发段、冷凝段传热系数以及最大换热功率的影响,对使用水基CuO纳米流体为工质的倾斜微槽道热管强化换热特性进行实验研究.实验装置主要由带角度调节功能的微槽道热管和加热、冷却系统组成.实验结果发现,用水基纳米流体替代去离子水为工质时,热管整体换热特性得到明显增强,蒸发段、冷凝段传热系数以及最大功率都能大幅度提高,总热阻明显降低.倾斜水热管的蒸发段和冷凝段传热系数比水平水热管的有大幅提高,但最大功率变化不大.而倾斜纳米流体热管不但蒸发段和冷凝段传热系数比水平纳米流体热管有大幅提高,而且最大功率更有接近一倍的增加.对水和纳米流体两种工质,对应于最佳换热特性的倾斜角都是75°.因此,纳米流体对倾斜热管有良好的应用前景.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号