首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
薄壁板结构随机声激励振动响应计算与分析   总被引:1,自引:0,他引:1  
针对航空发动机压气机转子叶片结构声振动问题,建立了薄壁板有限元简化模型,基于耦合有限元/边界元法对薄壁板在行波加载下随机声激励振动响应进行了仿真计算,得到了在不同声压级下的应力响应结果.改变声载荷激励方向,分别对薄壁板施加单音噪声激励和宽频随机噪声激励,通过仿真计算得到了不同角度随机声激励下薄壁板振动响应频响曲线.对比分析发现,薄壁板模态振型与噪声加载方向是引起薄壁板共振的重要因素.  相似文献   

2.
薄壁结构在热声载荷作用下的应力响应对其疲劳寿命估算有着很大的影响.给出了热声载荷作用下加筋板结构的大挠度运动方程,运用有限元方法进行数值模拟,分别计算了四边简支薄壁板与加筋板在相同有限带宽高斯白噪声载荷和变化温度下的应力响应,得到了应力时间历程、应力概率密度分布和应力功率谱密度,利用改进的雨流计数法,结合线性累计损伤理论,采用Smith-Watson-Topper(SWT)平均应力模型估算了两种结构在热声载荷作用下的疲劳寿命,并进行了比较分析.  相似文献   

3.
沙云东  张墨涵  赵奉同  朱付磊 《航空学报》2019,40(4):222544-222544
针对热声载荷作用下薄壁结构大挠度非线性响应问题,开展了固支约束金属薄壁板结构热声激励试验及数值模拟分析。通过计算结果与试验结果对比,表明两者结果存在一致性,进而验证了薄壁板在热声载荷作用下动态响应计算方法和数值模型的有效性。在此基础上,针对加筋板结构完成了多种热声载荷组合作用下的动力学响应计算,获得了时域位移响应。重点对该结构在后屈曲状态下的3种典型振动形式进行分析,总结出热载荷与声载荷之间的相对强度决定了板的不同跳变形式。采用统计分析方法建立了位移响应的概率谱密度函数(PDF)并绘图,清楚地显示了后屈曲板的PDF表现出双峰现象。使用功率谱密度(PSD)函数分析了响应频率和峰值随着温度升高的变化,并确定了板的软化和硬化区域。总结了屈曲前/后结构特定区域拉应力和压应力的变化规律,并阐述了造成这种变化的原因。本文工作可对热声载荷作用下薄壁结构响应分析和动强度设计提供参考依据。  相似文献   

4.
声载荷作用下高温薄壁结构响应特性分析   总被引:1,自引:1,他引:0  
先进的航空航天器表面结构暴露在严酷的工作载荷环境中,包括复杂的机械力载荷、压力载荷、声载荷和热载荷等,航空航天器表面结构可简化为薄壁结构,在复合载荷作用下结构以非线性方式响应,呈现出复杂的响应特性。首先以热弹性力学、板壳理论及结构稳定性原理为基础,建立热及噪声载荷联合作用下薄壁板运动模态方程,讨论了薄壁结构跳变响应的机理,进而运用等价线性化方法求解模态方程,在此基础上分析了热及噪声载荷对薄壁结构屈曲的影响,进而探讨了热及噪声载荷作用下薄壁结构的非线性响应统计特性。计算了四边简支高温钛合金薄板在声载荷下四个关键点处的均方应变,为进一步开展薄壁结构声疲劳寿命估算和强度设计奠定了基础。  相似文献   

5.
研究薄壁结构在声载荷激励下的随机振动响应问题是进行结构声疲劳估算和设计的基础。从此问题出发,综述了国内外在结构声疲劳方面的研究情况,并对有关模态分析法、数值积分法、统计能量分析(SEA)法及有限元素法等研究方法进行了总结和评价,得到了各方法在计算薄壁结构受声激励时振动响应的各自应用范围。同时也指出了薄壁结构在声载荷作用下振动响应研究所面临的困难。  相似文献   

6.
邹学锋  郭定文  张昕  屈超  潘凯 《推进技术》2019,40(5):1136-1143
复杂耦合载荷环境是导致高速飞行器进气道等部件破坏的重要因素。为预测静力、噪声、热等联合载荷作用下进气道壁板结构的响应特性,进而指导其结构设计及试验,以四边简支典型钛合金壁板结构为研究对象,由薄板大挠度运动方程出发,结合有限元法计算得到钛合金板的热屈曲系数、热模态特性以及预应力作用下的模态特性,利用顺序耦合方法计算壁板的热声响应。利用Newmark时间积分方法对计算进行非线性处理,分析得到壁板中心处的频率响应特性,采用蒙特卡洛法生成时域随机载荷,在此基础上计算得到钛合金壁板在静力、热、噪声联合载荷下的时域响应特性曲线。结果表明:热声载荷作用下,四边简支钛合金壁板结构的临界屈曲温度较低,容易产生屈曲,屈曲后结构的模态和频率均发生改变,其热声响应呈现复杂的非线性特征,静力、热、噪声联合条件下,由于静力的刚度硬化/弱化效应,壁板的热声跳变持续时间较短,且较快进入后屈曲状态。  相似文献   

7.
高速飞行器薄壁结构在高速气流冲击下,产生的热载荷、声载荷、随机振动载荷会使结构产生非线性大绕度动力学响应和高周疲劳破坏。对3组一端固支GH188薄壁板开展行波管热声疲劳试验,研究了温度和声压级对薄壁板的响应及寿命的影响,得到在热声载荷下薄壁结构的频率和动应力响应以及可能产生破坏的危险位置和疲劳寿命。根据耦合的有限元/边界元法对薄壁结构的非线性响应进行数值仿真,采用改进的雨流计数法和Morrow平均应力模型预估结构的疲劳寿命,与试验结果对比:频率响应误差在1%以内,基频应力响应误差在1%~3%,寿命值在3倍左右,验证了热声疲劳寿命预估模型的有效性。随后分析了薄壁结构的热振特性,分析发现:在声载荷和随机振动载荷下,结果基频响应起主导作用,且变化趋势相似,当基频动应力水平相同且主要研究基频附近疲劳寿命时,可用热振试验代替热声试验;当频率较宽时,热振疲劳寿命明显低于热声疲劳寿命。  相似文献   

8.
高超声速飞行器受热壁板的气动弹性声振分析   总被引:1,自引:1,他引:0  
杨智春  刘丽媛  王晓晨 《航空学报》2016,37(12):3578-3587
高超声速飞行器壁板在非定常气动力、热载荷和噪声载荷构成的多物理场联合作用下,将表现出复杂的非线性气动弹性声振响应,特别是在颤振临界动压附近,受热载荷以及声载荷作用,壁板表现出复杂的跳变运动。基于von Karman大变形板理论,建立了热-声载荷和气动力共同作用下的壁板运动方程,分析了超声速气流中受热壁板的屈曲变形及热屈曲稳定性,借助势阱概念初步分析了壁板跳变运动产生的机理。通过定义“穿零频次”给出了跳变运动定量的分类方法,并计算得到不同温升和动压情况下,壁板发生跳变运动所对应的临界声压级。结果表明:在颤振临界动压之前,随着动压的增加,受热壁板势阱的深度先增大后减小,且受热壁板的势阱深度随着温升的增加而增大。  相似文献   

9.
采用解析方法,分析了薄壁板结构在热载荷与噪声联合作用下的响应特性;依据薄板的大挠度非线性理论,采用以基频响应为主的单自由度模型,推导出了具有温度影响的非线性运动方程,并利用等价线性化方法将该方程线性化,在此基础上得出了应力响应的统计特性。  相似文献   

10.
通过对某舱门结构在不同激励载荷作用下的动力响应进行分析,为舱门结构的动强度评估和振动疲劳寿命估算提供依据。  相似文献   

11.
直升机主减机匣结构振动噪声分析与优化   总被引:2,自引:1,他引:1  
张琳  李书  张韬 《航空动力学报》2016,31(2):323-329
针对直升机主减速器机匣的振动噪声问题,对机匣进行基于频率响应和模态贡献量的结构动力学特性分析,给出机匣的振动特性,并确定对结构振动特性起主要影响的模态.利用间接边界元与有限元相结合的方法,应用基于结构面板声功率贡献量的分析方法,进行结构噪声功率分析和结构噪声功率面板贡献量分析,给出机匣的声学辐射特性,找出相应激励频率下对结构噪声功率贡献量最大的面板.以该面板为设计域进行结构拓扑优化,并根据优化结果合理布置加强筋,以提高结构刚度,达减振降噪的目的.结果表明:结构速度频率响应峰值下降了36%,减振效果良好,结构声功率级有了明显的降低,其中声功率级峰值下降了5dB,降噪效果良好,为直升机主减机匣提供了一种可行的减振降噪方法.   相似文献   

12.
为提高卫星主承力结构刚度,本文基于定曲率圆弧曲线及平移法对变刚度夹芯板蒙皮进行设计,利用ABAQUS二次开发方法及响应面法对不同起始角/终止角组合的夹芯板进行等效建模、模态分析和模态基频优化。数值计算结果表明,变刚度设计的夹芯板由于曲线铺放提升夹芯板模态基频,蜂窝板的模态基频随起始角先增大后减小,随终止角增大而增大,基频最大提升12.33%,可以减小蜂窝基本承力结构与设备的动态耦合效应。  相似文献   

13.
某型航空发动机环形燃烧室火焰筒声学模态分析   总被引:3,自引:3,他引:0  
燃烧不稳定不仅影响航空发动机的工作稳定性,而且还是造成燃烧室火焰筒薄壁结构声振耦合疲劳破坏的重要原因.燃烧不稳定性的非稳态运动与燃烧室火焰筒的固有声学振型密切相关,因此对燃烧室火焰筒进行声学特性分析具有重要意义.为此建立了航空发动机环形燃烧室火焰筒声学有限元模型,分析了燃烧室火焰筒的声学特性.分别对常温常压下和高温高压下燃烧室火焰筒的声学模态进行了分析,获得了相应的声学固有频率和振型,为发动机燃烧室结构抗疲劳设计提供了参考.  相似文献   

14.
热声载荷下薄壁结构振动响应试验验证与疲劳分析   总被引:1,自引:0,他引:1       下载免费PDF全文
沙云东  王建  赵奉同  骆丽 《航空动力学报》2017,32(11):2659-2671
由于热声环境下金属薄壁结构表现出复杂的大挠度强非线性振动响应特性,影响结构的疲劳性能与寿命,结合有限元法与降阶模态法对四边固支高温合金矩形薄壁结构的热声响应进行计算。结果研究发现:屈曲后结构出现跳变运动且应力循环呈三角状分布,热声载荷的相对强弱决定了跳变形式。采用改进雨流计数法、Morrow平均应力模型、Miner线性损伤累积理论计算热声疲劳寿命,屈曲前到临界屈曲时应力循环损伤量级显著增大,由10-5增大到10-4,寿命随温度增加呈先减小后增加趋势。开展薄壁结构热声试验,并将仿真计算结果与试验结果进行对比,结果表明结构的模态频率偏差不超过1Hz,动态应变响应结果的量值相当,验证了薄壁结构热声响应计算方法与模型的有效性。   相似文献   

15.
未来飞行器在服役过程中会遇到气动热、力、振动、噪声等多种载荷联合作用的严酷环境,其结构设计、分析与试验验证面临巨大的技术挑战.针对受热结构在随机噪声载荷作用下的动态响应问题,采用基于顺序耦合策略的谱分析法分析热声耦合动态响应.通过对典型结构的仿真分析,给出了响应均方根应变和功率谱密度响应等计算结果,并与试验结果从数值和形态上进行了比较.结果表明,结构受热后各阶局部模态频率降低明显,功率谱密度响应曲线峰值对应的频率发生明显的前移,随机噪声载荷引起的响应均方根应变很小,并且仅能激起结构的局部模态,分析与试验结果在趋势与数值上均吻合较好,具有较好的工程实用性.  相似文献   

16.
针对航空发动机薄壁结构热声疲劳问题,采用耦合的有限元/边界元法,对GH188薄壁结构进行动力学响应计算,采用改进的雨流计数法和Morrow平均应力模型,结合Miner线性累积损伤理论对薄壁结构疲劳寿命进行了预估。基于高温行波管试验器开展了GH188薄壁结构高温声激振疲劳试验研究,获取了薄壁结构在不同温度和声载荷作用下的模态频率、应力/应变响应和疲劳寿命结果。仿真计算结果与试验结果对比分析表明:数值仿真对结构破坏位置判断准确,破坏位置均为结构根部,结构1阶热模态频率具有一致性,误差0.49%~2.09%之间,X方向应力响应峰值集中在基频附近,随温度升高,结构发生软化刚度下降,响应峰值向左发生偏移,且预测水平与试验一致,误差在1%~3%之间,验证了薄壁结构热声响应计算方法与计算模型的准确性。结构疲劳寿命随温度和声压级的上升而均呈现下降趋势,疲劳破坏时间的预估值与试验结果在一个量级之内,误差在3~3.5倍之间,满足工程级寿命预测要求,验证了薄壁结构热声疲劳寿命预估方法的有效性。   相似文献   

17.
热环境对飞行器壁板结构动特性的影响   总被引:3,自引:0,他引:3  
 高超声速飞行器在巡航或再入过程中面临着严酷的气动力/热/噪声等复合环境,对热防护系统结构的完整性和耐久性提出了严峻挑战。热环境下的动特性是进行结构动态响应分析和优化设计的基础,本文对四周简支的飞行器热防护系统金属加筋壁板热动特性进行了分析,使用有限元软件NASTRAN建立分析模型,基于理论和有限元方法获得了壁板结构热屈曲临界温度,研究了热环境对固有振动频率和固有振型的影响,对比分析了均匀和非均匀温度场对结构模态的影响。结果表明,壁板结构在热环境下易发生屈曲,热模态分析中需考虑热屈曲、大位移变形等因素。同时证实热环境对壁板结构动特性影响较大,结构的固有振动频率随热环境下弹性模量的降低而减小,热应力对结构的固有振动频率和振型都有影响,当温度场分布改变时,固有振动频率的变化规律基本相同,固有振型则不同。  相似文献   

18.
本文通过对直升机尾桨噪声的机理进行分析,建立了尾桨与涡线干扰噪声的计算模型.计算模型中包括气动计算和声学计算,气动计算的结果作为声学计算的输入量.气动计算中分别采用三维非定常面元法计算桨叶表面压力和有扰动薄翼理论计算涡线干扰下桨叶的压力增量;声学计算中采用推导自FW-H方程的Farassat 1a公式,获得声压的时间历程.通过算例分析得到了一些有意义的结论.  相似文献   

19.
纤维增强树脂基复合材料阻尼特性的数值模拟   总被引:2,自引:1,他引:2  
应用基于应变能的有限元方法研究了纤维增强复合材料的阻尼特性,此方法从单向复合材料的阻尼性能参数出发,通过有限元模态分析得到复合材料结构的模态损耗因子,与已有的理论分析和试验结果相比吻合较好,从而验证了该方法的合理性。该方法还可以比较三维应力分量对阻尼的贡献。本文将该方法应用于一种复合材料等间距正交网格加筋板的阻尼特性分析,考察了加筋对复合材料层合板阻尼特性的影响。  相似文献   

20.
高频噪声场中薄壁结构响应的预估   总被引:2,自引:0,他引:2  
本文用统计能量分析(StatisticalEnergyAnalysis简称SEA)法研究了在高频宽带随机噪声场中板及加筋板(航空航天器用蒙皮)的加速度响应。发现,在高频段同样外场激励情况下,加筋板的响应大于光板的。本文解释了这一用质量定理无法解释的现象,并用叠加法确定了复杂结构加筋板的模态密度、辐射阻抗和输入功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号