首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
为了研究高温环境下二维正交编织C/SiC复合材料壁板的固有振动特性随温度的变化规律,进一步揭示模态跃迁和丢失现象。首先建立了二维正交编织复合材料的细观非均匀有限元模型,基于细观模型采用体积平均法计算得到了均匀化后材料的模量、热膨胀系数和热传导系数等宏观性能参数。在此基础上,分别研究了均匀温度和线性非均匀温度载荷下,四边简支复合材料板在屈曲前后固有频率及模态振型随温度的变化规律。研究结果表明:在均匀温度场下,如果仅考虑热载荷对材料模量的影响时,随着温度的升高,各阶固有频率逐渐降低,但降低的幅度不大;仅考虑热应力对结构刚度影响时,在临界屈曲温度后固有频率反而上升,并且随着温度的升高出现了频率交错,其对应振型发生了跃迁现象;当同时考虑热物性和热应力影响时,各阶频率值变化趋势与仅考虑热应力时类似,只是对应温度点的频率值有所下降。而在线性非均匀温度场下,通过对比不同工况下的模态振型发现,随着温度的升高某些模态振型还会出现丢失,并且这种丢失是从低阶到高阶依次发生的。  相似文献   

2.
邹学锋  郭定文  张昕  屈超  潘凯 《推进技术》2019,40(5):1136-1143
复杂耦合载荷环境是导致高速飞行器进气道等部件破坏的重要因素。为预测静力、噪声、热等联合载荷作用下进气道壁板结构的响应特性,进而指导其结构设计及试验,以四边简支典型钛合金壁板结构为研究对象,由薄板大挠度运动方程出发,结合有限元法计算得到钛合金板的热屈曲系数、热模态特性以及预应力作用下的模态特性,利用顺序耦合方法计算壁板的热声响应。利用Newmark时间积分方法对计算进行非线性处理,分析得到壁板中心处的频率响应特性,采用蒙特卡洛法生成时域随机载荷,在此基础上计算得到钛合金壁板在静力、热、噪声联合载荷下的时域响应特性曲线。结果表明:热声载荷作用下,四边简支钛合金壁板结构的临界屈曲温度较低,容易产生屈曲,屈曲后结构的模态和频率均发生改变,其热声响应呈现复杂的非线性特征,静力、热、噪声联合条件下,由于静力的刚度硬化/弱化效应,壁板的热声跳变持续时间较短,且较快进入后屈曲状态。  相似文献   

3.
某型航空发动机环形燃烧室振动特性分析   总被引:2,自引:0,他引:2  
建立了环形燃烧室薄壁多孔结构的有限元模型,模拟燃烧室在实际工作中的安装条件,分析了燃烧室在不同工作状态下的模态频率和模态振型等.利用常温自由状态条件下有限元模型计算的振动特性,与该状态下的试验结果进行对比,修正计算模型.结果表明,修正后的计算结果与试验结果基本相符,保证了环形燃烧室各工作状态下振动特性分析的有效性.研究了不同工作状态对燃烧室温度场的影响及温度场对燃烧室模态频率的影响,结果表明燃烧室的工作温度越高,其模态频率越低;另外,计算结果表明该近似对称结构系统具有非单构系统的特点,其相似振型可作为同一阶振型加以考虑.  相似文献   

4.
热环境下结构固有振动特性试验及分析   总被引:2,自引:2,他引:0  
谭光辉  李秋彦  邓俊 《航空学报》2016,37(Z1):32-37
高超声速飞行器在气动热环境中,其固有频率和振型会受温度升高的影响而发生变化,从而其颤振特性也要发生改变。本文建立了适用于工程应用的飞行器翼面结构热模态试验方法及试验装置,为验证该方法的有效性,针对高超声速飞行器翼面结构特征,设计和制造了钛合金翼面盒段试验件,测试了高温环境翼面热模态。开展了单面加热、双面加热、温度呈梯度分布加热和随时间变化加热等几种加热方式对比试验,试验结果表明,温度升高对结构模态特性影响明显;且该试验方法具有很高的工程实用价值,可应用于飞行器翼面结构热模态试验;同时,建立了试验件有限元模型,开展了热模态分析,对试验结果和分析结果进行了对比分析和讨论,结果具有较高的一致性。  相似文献   

5.
刘浩  李晓东  杨文岐  孙侠生 《航空学报》2015,36(7):2225-2235
高速飞行器翼面结构的热振动试验研究对这类飞行器的设计和安全飞行具有重要的意义。采用时变自回归滑动平均(TARMA)模型方法建立了受热时变结构系统模态频率辨识的数学模型,并用一个数值算例进行了验证。将地面振动测试系统与瞬态热环境模拟系统相结合,设计了翼面结构热振动试验系统并模拟结构的瞬态温度场,同时对纯随机激振力激励下受热时变结构系统的振动位移信号进行测量,并用TARMA模型对时变固有频率进行了辨识,获得了前4阶固有频率随加热时间的变化规律,并将辨识结果与数值计算结果进行了比较,两者误差在5%以内。另外,在稳态均匀热环境下辨识得到的结构系统固有频率变化与数值计算结果也吻合得很好。通过将均匀温度场与瞬态温度场下的结果进行对比分析,指出了瞬态热环境下时变结构的固有频率随加热时间变化的趋势主要由结构材料属性的退化和结构内部不均匀热应力的影响共同决定。  相似文献   

6.
在动力分析中、固有模态是十分重要的.固有模态分析的结果是多种动态行为的判据,也是进一步进行结构动力学分析的基础数据.为了分析方便,对某发动机高压涡轮盘-叶片进行了合理的简化,利用UG三维建模和有限元计算,分别进行了涡轮盘联接孔全约束和完全自由状态下固有模态计算,给出了两种约束前十阶的固有频率和振型图.说明了各阶固有频率振型的运动特点,以及不同形式的振型振动对涡轮盘-叶片和其它结构系统的不利影响.分析结果对某航空发动机的动力分析有一定参考价值.  相似文献   

7.
杨志斌  杨海  周东 《航空计算技术》2011,41(5):65-67,71
掌握波纹管的振动特性并使其固有振动频率合理分布是发动机动力学研究的重要内容之一。在分析发动机进气管振动对发动机影响的基础上,建立了某发动机进气管的有限元分析模型。通过仿真计算得到了热振动模态参数,验证了进气管设计的合理性。结果表明,结构温度发生显著变化并引起热应力,进一步影响到结构的固有振动特性,为发动机进气管的动力响应分析和进一步的结构优化设计提供理论参考依据。  相似文献   

8.
高速飞行器热结构工作时变模态参数辨识   总被引:1,自引:0,他引:1  
高速飞行器由于其很高的飞行速度而无可避免地受到气动加热作用的影响,进而引起结构特性的时变。采用理论或有限元方法(FEM)进行数值分析,难以获取反映结构在飞行(工作)状态下的真实模态参数。通过辨识获取高速飞行器热环境下的时变结构模态参数是一项十分具有挑战性的任务。针对此问题,引入参数化时频域的最大似然方法,对气动加热作用下的高速飞行器升力面结构的时变模态参数进行了辨识。通过模拟真实飞行状态的数值算例研究,说明参数化时频域的最大似然方法能够很好地辨识出低信噪比(SNR)情况下的模态频率和模态振型,验证了参数化时频域最大似然方法适用于具有显著时变特征的高速飞行器热结构的时变结构模态参数辨识,可为将来相关的工程研究和应用提供良好的理论支持。  相似文献   

9.
超声速流动中功能梯度曲壁板的热气动弹性颤振机理   总被引:1,自引:1,他引:0  
对高超声速环境中功能梯度曲壁板的热气动弹性颤振机理及分岔特性进行了研究。分别采用活塞理论和Eckert参考焓方法模拟气动力以及气动加热效应,在求解板内二维热传导方程以及考虑温升对材料物性影响的基础上,建立了一个气动加热-气动弹性双向耦合的功能梯度曲壁板的热气动弹性颤振模型。采用有限元方法对曲壁板控制方程进行了数值模拟,着重分析了不同拱高下曲壁板的分岔行为,探讨了拱高变化对曲壁板分岔图的影响,发现了曲壁板颤振三种典型的颤振行为,即:热屈曲、混沌以及规则振动。对初始拱高板厚比为1时,曲壁板的两种规则振动行为进行对比发现,随着马赫数的增大,气动加热效应所引起的热内力会使曲壁板的规则振动更加复杂,同时振动的主振型及频率均会发生变化。  相似文献   

10.
1200℃高温环境下板结构热模态试验研究与数值模拟   总被引:4,自引:1,他引:3  
吴大方  王岳武  商兰  蒲颖  王怀涛 《航空学报》2016,37(6):1861-1875
高超声速飞行器高马赫数飞行时,翼、舵及垂尾等板形姿态控制结构将会面临极为严酷的高温环境,为了获得难于实测的结构在高温与振动复合环境下的热模态参数,本文将瞬态气动热试验模拟系统与振动试验系统相结合,建立了高温热/振联合试验测试系统,实现了高达1200℃热环境下矩形板结构的模态频率等关键振动参数的试验测试。同时,对矩形板结构的热模态特性进行了数值计算,并将试验结果与计算结果进行对比验证。试验中通过自行研制的耐高温陶瓷导杆引伸装置将结构上的振动信号传递至高温热场之外,使用常温加速度传感器对振动信号进行参数识别;并运用时-频联合分析技术对试验数据进行分析处理。本文所获得的高温环境(200~1100℃)下矩形板结构的模态频率的试验结果与数值计算结果取得了比较好的一致性,验证了本试验方法的可信性及可用性。本研究结果为高超声速飞行器翼舵结构在高温环境下的振动特性分析以及安全可靠性设计提供了重要的试验手段和参考依据。  相似文献   

11.
热声载荷下薄壁结构振动响应试验验证与疲劳分析   总被引:1,自引:0,他引:1       下载免费PDF全文
沙云东  王建  赵奉同  骆丽 《航空动力学报》2017,32(11):2659-2671
由于热声环境下金属薄壁结构表现出复杂的大挠度强非线性振动响应特性,影响结构的疲劳性能与寿命,结合有限元法与降阶模态法对四边固支高温合金矩形薄壁结构的热声响应进行计算。结果研究发现:屈曲后结构出现跳变运动且应力循环呈三角状分布,热声载荷的相对强弱决定了跳变形式。采用改进雨流计数法、Morrow平均应力模型、Miner线性损伤累积理论计算热声疲劳寿命,屈曲前到临界屈曲时应力循环损伤量级显著增大,由10-5增大到10-4,寿命随温度增加呈先减小后增加趋势。开展薄壁结构热声试验,并将仿真计算结果与试验结果进行对比,结果表明结构的模态频率偏差不超过1Hz,动态应变响应结果的量值相当,验证了薄壁结构热声响应计算方法与模型的有效性。   相似文献   

12.
高速飞行器中大量使用复合材料薄壁结构,高温和强噪声联合作用的工作环境使复合材料薄壁结构表现出强非线性振动响应特性和复杂的运动形式。以四边固支碳/碳(C/C)复合材料薄壁结构为研究对象,采用有限元法计算了其在不同温度和声压级(SPL)组合下的振动响应。得到了典型的振动响应运动形式,包括屈曲前的随机振动、屈曲后的跳变运动和围绕一个平衡位置的随机振动。结合振动响应的概率密度、功率谱密度,随着温度和声压级的变化,对振动响应的非线性特性进行了分析。结果表明,热载荷和声载荷对响应非线性特性的影响方式不同,强噪声载荷引起的问歇跳变降低了结构的刚度。  相似文献   

13.
通过理论推导和有限元仿真,研究四端固支的复合材料层合板胶接修理结构在湿热环境下的振动特性。基于Mindlin一阶剪切变形理论和Hamilton原理,考虑湿热应力,利用温度与湿度的等效性,推导受湿热环境影响的复合材料层合板本构方程,采用有限元法求解层合板的振动特征方程。利用有限元软件ABAQUS,建立胶接修理层合板模型,并与文献结果进行对比,讨论不同的湿热环境和附加补片个数对胶接修理层合板振动特性的影响。结果表明:湿热环境下,附加补片的引入都使得胶接修理层合板各阶固有频率降低,附加补片个数由一个变为两个时,一阶固有频率进一步下降;湿度增加对固有频率降低的影响大于温度增加对固有频率的影响;在温度、湿度同时升高的环境下,附加补片的引入会使层合板胶接修理结构更早地达到湿热屈曲的状态。  相似文献   

14.
不同气流偏角下的壁板热颤振分析及多目标优化设计   总被引:1,自引:0,他引:1  
王晓庆  韩景龙  张军红 《航空学报》2010,31(11):2195-2201
 研究了考虑热效应的不同气流偏角下的壁板颤振问题及其多目标优化设计。采用考虑气流偏角影响的一阶活塞气动力、Von-Karmon大变形理论和准定常热应力理论建立了复合材料壁板热颤振方程。利用模拟退火算法,对不同温度场下的偏航壁板颤振速度进行计算。以偏航壁板热颤振速度和壁板重量为多目标函数,在不发生热屈曲的条件下进行优化设计。结果显示:温升使偏航壁板颤振发生“跳跃”现象,对应的气流偏角发生变化;当壁板热颤振模态不变时,偏航壁板颤振速度随温升呈下降趋势,两者呈线性关系;而当热颤振模态发生变化,即偏航壁板颤振发生“跳跃”现象时,偏航壁板颤振速度随温升先升高而后降低,两者呈非线性关系;Pareto解对应的多目标函数之间呈线性关系。  相似文献   

15.
倪杨  徐元铭 《航空学报》2015,36(5):1511-1519
针对在新型制造技术背景下的航空轻量化结构发展,提出了次级加筋结构3种可能的形式,并对金属次加筋结构的稳定性问题进行了数值计算与优化研究。基于多学科优化软件ModelCenter与有限元(FEM)软件ABAQUS建立了金属次加筋结构优化设计的软件框架,利用粒子群优化(PSO)算法对各形式下次加筋结构的参数配置进行优化。分析了各形式的优化结构在单轴压载作用下,次加筋板对传统加筋板临界屈曲载荷以及极限承载能力的增益效果。结果表明,引入次加筋结构使传统加筋板的稳定性能与极限承载能力提升明显,对于适应新制造技术的航空轻量化结构设计有一定参考价值。  相似文献   

16.
采用有限元法分析了高速异步电主轴电机定子结构的动力学特性(振型、固有频率),分别采用解析法和有限元法分析了电机在额定转速60 000 r/min下空载和负载的电磁力波,利用傅里叶变换对径向气隙磁密和径向电磁力波进行了谐波分析,得到了不同阶次不同频率下的谐波幅值。还将得到的电磁力波加载到电机定子相应节点处,对高速异步电主轴电机进行了电磁振动和声场分析,并计算出电机在空载和负载情况下产生的电磁噪声。  相似文献   

17.
针对1个扭型、变截面旋转叶片,基于ANSYS有限元软件,采用变厚度壳单元来模拟真实叶片的方法建模,并与实体单元模型对静频和固有振型进行对比,验证了该建模方法的准确性;在此基础上分析了科氏力、旋转软化、离心刚化以及三者耦合对叶片动频特性的影响规律;基于壳单元动频数据,对现在常用的动频系数经验公式的适用性进行了简单评价。研究结果表明:2种模型的动频规律一致,对系统影响由大到小依次为离心刚化、旋转软化和科氏力;叶片A0振型的动频系数吻合较好,A1振型的反之  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号