首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
  国内免费   2篇
航空   23篇
航天技术   3篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1991年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
3.
马艳红  倪耀宇  陈雪骑  邓旺群  杨海 《航空学报》2021,42(3):223861-223861
航空燃气轮机为了实现高负荷、轻质化的追求,在转子结构设计中,趋向于提高转速和加大长径比。这使得转子系统弯曲模态临界转速降低,转子在工作转速范围内不可避免会产生一定的弯曲变形。转子弯曲变形会影响连接结构界面接触特性的变化,使其连接结构局部弯曲刚度产生损失。因此,对于工作转速靠近弯曲临界的高速转子系统,需要考虑连接结构界面接触状态变化对转子系统振动特性的影响。以高负荷的长拉杆-止口连接转子系统为对象,分析连接界面接触应力分布特性,提出连接结构弯曲刚度损失修正方法,以此为基础建立界面连接转子动力学模型。通过对止口连接三级轴流压气机转子结构动力学特性的仿真和试验研究表明,在靠近弯曲振型临界转速下,转子连接界面接触状态的变化会产生弯曲刚度损失,对转子动力学特性具有显著影响。  相似文献   
4.
具有初始热变形的转子系统振动响应分析   总被引:1,自引:1,他引:0  
航空发动机热起动时的温度分布不均会使转子产生初始热变形,进而引起发动机振动过大,甚至导致起动失败。针对此问题,以航空发动机中的典型转子为对象,根据初始热变形对转子振动的影响建立相应的动力学方程,并通过模态坐标变换分析初始热变形对转子系统振动响应的影响。结果表明,初始热变形相当于对转子作用了附加激励,包括转轴初始弯曲激励、附加不平衡激励和附加陀螺力矩激励,上述激励均与转速同步。其中,附加不平衡激励和附加陀螺力矩激励大小与转速有关,对转子通过各阶临界转速的振动响应均有较大影响;转轴初始弯曲激励大小与转速无关,主要影响低阶临界转速的振动响应。   相似文献   
5.
数字化工厂平台作为航空制造企业的数字化基础能力,其建设和应用对于缩短航空产品研制周期、减少研发成本和风险、开展面向制造的产品设计、优化生产线配置和布局、增加设备生产能力和利用率、提高产品质量、改善工人的工作环境具有突出作用。  相似文献   
6.
新一代航空发动机先进制造技术   总被引:1,自引:0,他引:1  
高性能航空发动机的发展对制造装备和工艺的要求越来越高,我们必须下大力气开展高性能航空发动机制造技术的研究。在先进制造技术的大背景之下,结合航空发动机行业的实际需要,在加大对先进工艺装备投入的同时要充分发挥现有装备的制造能力。  相似文献   
7.
杨海 《红旗技术》2001,(1):22-25
依据工作实践,总结出在精锻叶片模具设计中计算机进行三维造型的设计要点和数控加工过程中存在的工艺难点,找出了新的解决办法。  相似文献   
8.
针对航空发动机中常见的带有挤压油膜阻尼器(SFD)转子的动力学相似问题,建立了一种相似建模方法。从带有阻尼的转子的振动微分方程着手,通过方程分析法推导了转子振动过程中的不平衡力相似关系和阻尼力相似关系。以挤压油膜阻尼器的油膜力和油膜方程为基础建立了挤压油膜阻尼器参数与转子相似参数之间的数学关系,并给出了相应的工程设计方法。以某带有挤压油膜阻尼器的单转子系统为例,建立了带有挤压油膜阻尼器的相似转子系统,使用有限元法分析了该转子系统与其相似系统的动力学特性,分析结果显示:在仅考虑转子系统内挤压油膜阻尼器阻尼的情况下相似系统的不平衡响应与原转子系统不平衡响应误差低于1%。  相似文献   
9.
舰载机全机落震试验是在实验室环境下测试舰载机着舰时结构动态载荷、动态响应以及机载设备冲击环境下功能可靠性的重要试验手段。本文提出了舰载机全机落震试验的试验方法,并对试验过程中机翼升力模拟、试验件下沉速度控制、试验件航向速度模拟及机体动态载荷测试等试验过程中的关键技术问题提出了解决方案,并通过试验对技术方案进行了验证。最后通过全机落震试验系统验证了试验方法的可行性及有效性,为舰载机着舰动态载荷及响应的测试提供了可行的试验方法,并为舰载机研制提供可靠的试验数据。  相似文献   
10.
如果说航空发动机是飞机的心脏,那么叶片就是发动机心脏中的关键组成部分。叶片是航空发动机中非常关键的一类典型零件,具有种类多、数量大、形面复杂、几何精度要求高等特点。在航空发动机零件中,叶片是寿命较短的零件,因此发动机叶片的制造品质直接影响到发动机性能与寿命。在现代战争条件下,对于航空发动机的零部件制造效率和制造质量提出较高要求,其中叶片作为发动机中数量最大的一类零件,其制造效率直接影响发动机整体制造效率,而叶片的制造品质直接影响到发动机性能与寿命。对叶片加工采用数字化技术,已成为当今世界发动机叶片制造手段的潮流与方向[1-5]。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号