首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文介绍提高机械式压力扫描阀测量精度的方法:实时采集传感器的初读数,消除传感器的零漂误差,实时校正传感器,消除电压与压力换算数的误差;选用离份辨率,高精度的模数转换板;采用数字滤波法及使用小量程传感器提高采集数据精度,使机械式压力扫描阀能很好的地在低速风洞中应用,并满足试验要求。  相似文献   

2.
动水压力对沥青路面危害很严重,为了测量沥青路面的动水压力,基于光纤Bragg光栅传感原理设计了一种光纤光栅动水压力传感器,介绍了其压力传感原理,推导了该传感器波长与压力之间的关系式。通过室内标定实验,获得该传感器的压力与光栅波长漂移成良好的线性关系,并埋设于某高速公路路面测量了动水压力。试验结果表明,该传感器稳定性好、抗干扰能力强,适用于沥青路面动水压力的测量。  相似文献   

3.
卫凯  徐琛  燕群  徐健  王龙 《航空动力学报》2023,38(4):949-954
为了验证旋转桨叶表面压力的反演计算方法,搭建了旋转桨叶表面压力反演试验平台,对一套二叶螺旋桨的表面压力开展了反演试验。通过传声器阵列测量螺旋桨的远场噪声,利用Kulite压力传感器和离线式采集器测量桨叶表面的静压,并与计算结果进行对比。结果表明:在所研究的工况范围内,计算结果与试验结果吻合较好,趋势基本一致;其中两个测点的试验结果与计算结果误差在1%以内,精度很高;另两个测点的对比差值较大,主要是压力传感器安装工艺误差所导致的。  相似文献   

4.
介绍了压气机进口压力畸变场测试用传感器实时校准系统的技术要点、系统构成和校测结果。表明采用该系统后,能在保证测试精度前提下节省测压系统经费,适用于压力传感器多,量程一致的的压力测试中。  相似文献   

5.
压力传感器输入输出关系通常以线性拟合直线来表示,而实际输入输出关系并不是直线关系,本文用最小二乘法拟合压力传感器输入输出非线性方程,并给出不确定度分析,可以提高测量的准确度。  相似文献   

6.
冲击波压力传感器测试系统的动态标定   总被引:6,自引:0,他引:6  
介绍压力场测试中所采用的压电压力传感器的标定方法。压力场测试中所采用的传感器是一种以压电晶体做敏感元件的压力传感器,它可以将压力讯号直接转换成电荷输出,其输出量与被测量压力成正比。该传感器具有较大的测压范围、较好的线性、快速的上升时间、高的压力-电荷灵敏度和较小的几何尺寸。给出了压电压力传感器的实验室标定方法和野外使用环境条件下的现场标定方法,并进行了对比研究。  相似文献   

7.
介绍了一种用8098单片机处理不对向测量五孔压力探针信号的测试仪器,它可以直接用数码管显示所测空间流场的总压、静压、α角、β角、速度和各测孔压力值,由于采用了高精度的带温度补偿的压力传感器,前置放大器,提高了仪器的测量精度,该仪器输出有串口和并口,容易实现快速记录和与上位计算机通讯。本仪器可通过圆柱三孔压力探针及速度管对空间气流的α角、总压、静压和速度进行测量,所以该仪器是一台多功能的测试仪。  相似文献   

8.
主要介绍压力传感器最小二乘直线不确定度的评定方法,并结合试验数据,对测量结果不确定度和最小二乘直线不确定度进行了比较及说明。  相似文献   

9.
在温度、压力、流量等参数测量中,因信号变化缓慢,远距离传送过程中,会造成信号漂移、噪声干扰等,影响整机的测量精度。如果将模拟星转换成数字量再进行数据传送就会抑制干扰,V/F变换是实现这种方式的方法之一。以下介绍其在测量中的具体应用。1测量原理(如图工)图1测量原理框图温度、流量、压力等传感器将相应的物理量转换成电压或电流信号.经前置器进行放大、电平调整归一化处理后提供给V/F变换器,并将其输入的电压信号转变成相应的频率脉冲信号,经过远距离传送后供单片机最小系统,进行数据采集、分析、校正等处理输出驱动…  相似文献   

10.
旋翼模型桨叶表面压力测量试验   总被引:1,自引:0,他引:1  
采用"桨叶表面预先压槽,再粘贴片式压力传感器并粘胶带再开测量孔"的方法测量旋翼模型桨叶表面压力,在8 m x6 m风洞完成了地面悬停和风洞前飞试验,研究了桨叶表面压力测量技术和数据采集处理技术,获得了桨叶表面特征剖面的压力分布,建立了实用的旋翼模型桨叶表面压力测量试验技术.  相似文献   

11.
介绍用于测量高低温环境下高压气体绝对压力的传感器的设计,传感器采用谐振筒式敏感元件和数字量输出方式.量程满足0.02~4.0MPa,精度优于±0.05%FS,可在-55~150℃的较宽温度范围内可靠工作.该传感器可用于飞机发动机的电调系统,测量发动机不同位置的压力.文中主要论述了谐振筒的设计方法,确定了宽温大压力高精度...  相似文献   

12.
本文介绍了应用基于发光强度的全域压力测量方法进行叶片表面压力分布的一系列实验结果。在自主建立光学压力测量系统和自主研发国产压力敏感涂料的基础上,对高亚音速叶栅风洞出口处大弯度孤立叶片吸力面和对转压气机实验平台出口整流叶片吸力面的压力分布进行了测量,并采用传统电子静压扫描装置在高亚音速叶栅风洞中进行了同步测量。光学压力测量与电子压力扫描结果的对比表明所建立的光学压力测量系统可用于内流场测量,其精度达到了工程应用水平。  相似文献   

13.
光纤传感器及其在常规兵器试验中的应用   总被引:2,自引:0,他引:2  
介绍了光纤传感器的一般原理,详细了强度调制光纤压力传感器和波长调制温度传感器的传感机理。给出了光纤传感器在爆炸冲击波压力测量、爆炸燃烧和炮管的温度测量、环境湿度测量、爆炸速度测量中一些应用实例。  相似文献   

14.
三轴磁通门传感器在军事和民用领域应用广泛,但由于其存在三轴非正交、零偏和标度系数不一致的问题,导致其存在转向差,影响了其磁测精度。首先,分析了转向差的产生机理,建立了误差模型,通过最小二乘法估算出了误差参数,进而对磁测数据进行了转向差校正。仿真计算表明,该算法对误差参数估算准确,对磁场分量和总场模值均有较好的校正效果,证明了算法的有效性。在磁场测量实验中,利用该算法估算出了传感器的误差参数,并对实测磁场数据进行了校正。校正后,数据的转向差得到了明显抑制,提高了三轴磁通门传感器的测量精度。  相似文献   

15.
测量脉动压力用压阻式压力传感器,通过有限元应力分析求得灵敏度高,线性又好的双岛硅膜片结构;采用双面对准光刻工艺,各向异性腐蚀微机械加工制硅膜片等新技术。最后给出了脉动压力传感器的动、静态性能指标。  相似文献   

16.
为了检测边界层的分离点,探讨了根据表面压力分布变化判定分离点的检测方法,提出了基于微机电系统(MEMS)技术和柔性衬底的微型压力传感器阵列的结构方案,可实现在线实时测量,并满足非平面表面的流体测量要求;同时提出了1种分离点检测的判定方法,并通过二维圆柱绕流仿真验证了该方法的正确性和有效性。微型压力传感器阵列的引入,拓宽了边界层分离点检测的解决途径。  相似文献   

17.
某型飞机液压系统压力测量设备中,液压传感器在原理上存在非线性因素,制造过程中随机误差较大。在对传感器输出的差分信号进行整形放大的过程中,使用了非线性放大电路,另外,电路中的放大器和电阻等器件均存在随机误差,导致该液压系统压力测量设备的输入和输出之间没有显式的函数关系表达式。研究采用整体最小二乘法对输入和输出进行曲线拟合,将测量过程中原理性的非线性因素和所有器件的误差均作为一个黑箱因素处理,不需对其进行精确测量,由整体最小二乘法进行曲线拟合,硬件设计和软件编程两个方面都容易实现。  相似文献   

18.
提出一种面向硅压阻式压力传感器温度补偿的组合方法,采用拟合法建立不同温度下压力传感器变换函数,采用基于变换函数系数的线性插值法获得温度补偿后传感器变换函数,设计了压力传感器信号处理模块,开展了基于组合补偿方法的压力信号补偿过程仿真,结果表明经温度补偿后,压力测量精度在0.1%以内,温度补偿过程耗时约10 μs,补偿算法占用片上资源少,能够满足压气机出口压力测量要求。   相似文献   

19.
采用长细管法进行脉动压力转捩探测的实验研究   总被引:1,自引:0,他引:1  
为了简便地使用测量模型表面脉动压力特征的方法探测边界层转捩位置,需要研究脉动压力传感器接在传统测压模型外的适用性,即通过长细管将模型表面的脉动压力信号传递到脉动压力传感器上的方式是否可得到转捩的特征信号。首先采用信号发生器驱动扬声器,在无风条件下,测量了长细管对不同频率声压信号的传递损失情况。证明了所采用的长细管系统具有合适的工作频带。然后在西北工业大学NF-3低速风洞二元实验段、实验风速为30m/s的条件下,对弦长为800mm、展长为1.6m的翼型模型沿弦向进行了脉动压力信号测量,并通过改进的数据处理技术判断了模型表面的转捩位置。研究结果表明,采用长细管系统进行脉动压力方法转捩探测具有一定应用价值,值得进一步深入研究。  相似文献   

20.
压力传感器作为民机环控系统中的关重成品件,其性能好坏直接影响飞机空气系统的管理。为保证其装机质量,提升飞机研制和批产效率,设计了一套压力传感器自动测试台,用于压力传感器的性能测试。首先介绍了压力传感器在机上的功能、分类以及性能参数;然后根据其测试特性,分别从硬件构架、设备选型、测试软件以及配套设备等四个方面阐述了压力传感器测试台的设计方案,实现通过测试软件对压力传感器测试压力和温度的自动控制,并在测试压力和温度达到稳定后,自动采集压力传感器输出的电压信号,经过数据处理后生成测试报告并判断测试结果;最后列出了压力传感器测试台的应用范围和意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号