首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
采用态-态模型,研究包含振动能级跃迁、化学反应和辐射跃迁的O_2/O系统的非平衡过渡过程。对静止的O_2/O气体系统,设定不同的初始条件,突然降温或升温至3000K、10 000K、20 000K后保持等温等容,数值模拟组元质量分数、振动能级分布和辐射特性随时间的演化过程,分析不同条件下各类过程趋近平衡的松弛时间、稳态平衡结果等特征,以及辐射和热化学非平衡过程的相互影响特点。结果表明,态-态模型得到的振动温度趋近平衡值的特点与双温度模型所描述的不同,有时振动温度随时间甚至出现非单调变化的现象,非平衡过渡过程中的振动能级分布也不满足振动温度下的玻尔兹曼分布。本文算例显示出O_2/O系统在高温条件下的非平衡辐射特征,不过辐射跃迁对热化学非平衡过程的影响不明显,非平衡辐射的特征时间达到振动松弛时间的10倍以上。  相似文献   

2.
本文从轴对称热化学非平衡N-S方程出发,采用双温度、十一组元反应气体模型,利用隐式NND有限差分格式的时间预处理技术数值求解了FIREII飞船热化学非平衡流场。文中同时给出了七组元模型的计算结果,并进行了结果比较。  相似文献   

3.
采用轴对称NS方程,数值研究不同热化学非平衡模型对高超声速喷管流场的影响,包括:(1)不同组元数的高温空气模型(5组元、7组元1、1组元)的比较;(2)热力非平衡(双温度)的化学动力过程与热力平衡(单温度)的化学动力过程的比较。计算结果表明,高焓风洞实验条件下喷管流场处于热力和化学都是非平衡的状态。在计算条件下,数值模拟以采用7组元或11组元的热化学非平衡模型为宜。  相似文献   

4.
高超声速喷管非平衡黏性流动的数值研究   总被引:1,自引:0,他引:1  
分别采用平衡气体模型、化学非平衡气体模型和热化学非平衡气体模型,通过求解轴对称Navier-Stokes方程组,数值模拟了法国Marseille高焓激波风洞锥型喷管(H0=10.3MJ/kg),分析了热化学非平衡效应对喷管流动的影响,给出了平动温度、振动温度、马赫数和组分质量数在轴对称线上的分布与喷管出口附近的速度和温度沿径向分布等结果。计算结果表明:化学反应速度加快,会导致喷管出口温度增加,振动能的冻结会导致喷管出口温度降低。  相似文献   

5.
热化学非平衡流模拟中广泛应用的双温度或多温度模型不能描述分子在各振动能级上的分布,只能假设其满足振动温度下的Boltzmann分布。通过采用态-态模型研究非平衡过程中粒子的能级分布特点,有望为改进双温度或多温度模型提供思路。对静止的N2/N气体混合物,在各类不同初始条件和控制温度、压力下,采用态-态模型研究气体的化学组成和分子振动能级分布演化规律,分析各类微观过程的特征与贡献,结果表明:平动-振动能量交换过程起支配作用,促使振动能级分布趋于平动温度下的Boltzmann分布,而振动-振动能量交换过程主要影响能级分布变化的过渡过程特点;离解区和复合区能级分布的变化特点不同;关于非平衡过程中粒子微观分布的研究结果可为改进高超声速非平衡流模拟中的热化学模型提供参考依据。  相似文献   

6.
利用数值求解热化学非平衡Navier-Stokes方程的方法,建立了考虑一个和多个振动温度的高超声速热化学非平衡流场的CFD计算程序,并对半球模型和球锥模型进行了数值计算,研究结果表明:(1)各个分子组分的振动温度分布于考虑一个振动温度模型的振动温度周围,即一个振动温度模型的振动温度是多个振动温度模型的各个分子组分振动温度的一种平均值;(2)在模型身部,振动温度的峰值高于平动温度的峰值;在模型近尾出现振动温度冻结并高于平动温度。  相似文献   

7.
热化学非平衡流动红外辐射计算分析   总被引:1,自引:0,他引:1  
首先通过求解热化学非平衡N-S方程的数值模拟方法,获得高焓风洞钝锥体模型的绕流及近尾的高温流场参数.然后从辐射传输方程出发,采用带辐射模型,并利用所获得的流场参数,计算分析了高温流场在λ=3μm-6μm红外波段的辐射,计算和测量结果具有较好的一致性.该项研究为今后进一步研究高温非平衡气体辐射特性奠定了基础.  相似文献   

8.
高焓激波风洞喷管流场非平衡特性研究   总被引:1,自引:0,他引:1  
高焓激波风洞是开展高超声速流动研究的重要地面模拟设备,但其产生的高焓气流在喷管中的膨胀过程是一种典型的热化学非平衡流动,试验段特征参数通过直接实验测量难以完全确定。本文通过求解耦合双温度模型的轴对称Navier-Stokes方程,研究了高焓激波风洞中典型状态下气流的热化学非平衡流动特性,分析了焓值对非平衡特性的影响规律。结果表明,喷管出口自由流均匀区域达到出口截面直径的75%以上,能够为实验提供足够的空间;喷管出口自由流处于热化学非平衡状态,在喷管喉道后约1/5喷管长度处气流即已处于冻结流状态,组分浓度和振动温度随气流流动基本不变;焓值在8.4MJ/kg~19.5MJ/kg之间变化时,非平衡程度随着焓值的增加而增强,但是低焓值时非平衡程度的增强更加剧烈。  相似文献   

9.
飞行器以很高的马赫数再入大气层时 ,头部激波层、尾迹的气体辐射产生的紫外、可见、红外特征信号 ,是地面监测和反导制导系统探测、识别的主要依据 ;同时 ,头部气体层热辐射也是再入体壁面加热热流的重要源项。激波层内高温气体吸收系数是目标紫外、可见光、红外辐射特性计算、热防护计算和气动流场辐射场耦合计算的基本参数。本文分析了再入过程中高超声速稀薄气体流的非平衡现象 ,采用三温度模型 (电子能温度 Te、振动能温度 TV、转动和平动能温度 TR)来表征激波层内非平衡态的气体组份各个能级占有数分布 ,并由原子分子辐射理论直接计算 N2 ,N+ 2 ,N,N+ ,O2 ,O+ 2 ,O,O+ ,NO,NO+和 e-等 1 1种主要空气组元各种能级跃迁对辐射的贡献 ,最终得到平稀和非平衡高温空气吸收系数计算模型。计算结果可见光区与试验结果符合较好 ,紫外、红外区结果稍差  相似文献   

10.
激光参数对光船性能影响分析   总被引:1,自引:1,他引:0  
采用三温度11组元热化学非平衡空气模型计算了激光能量在等离子体中的沉积过程,并在激光脉冲作用结束8 μs后采用平衡空气模型,完成激光推进光船工作过程的数值模拟,研究了不同入射激光能量和脉冲宽度对光船推进性能的影响。结果表明:当脉冲宽度相同时,入射激光能量越大,所得冲量耦合系数越大;当入射激光脉冲能量相同时,脉冲宽度越小,所得冲量耦合系数越大。将计算所得冲量耦合系数与Schall实验所得结果进行比较,结果非常吻合。  相似文献   

11.
模型燃烧室紊流燃烧的大涡模拟   总被引:2,自引:2,他引:0  
采用了两种不同的亚网格尺度燃烧模型对带 V型稳定器的模型燃烧室紊流化学反应流动进行了大涡模拟 ,用 k-ε方程亚网格尺度模型确定亚网格紊流粘性 ,为了考虑热辐射对燃烧室壁温和气流温度的影响 ,运用热流法辐射模型估算热辐射通量 ,用 SIMPLE算法和混合差分求解大涡模拟各守恒方程 ,通过对两种不同亚网格尺度燃烧模型数值模拟结果与实验值的比较表明 ,两种燃烧模型都与实验值较吻合 ,但 G方程小火焰模型要比亚网格 EBU燃烧模型符合得更好些   相似文献   

12.
发展了一种考虑激波串结构的超声速燃烧流场分析模型,以应用于吸气式高超声速飞行器的设计优化过程。模型通过求解耦合有限速率化学反应的刚性常微分控制方程组来描述燃烧室内点火、燃烧等气动热力现象,采用Billig激波串模型模拟燃烧高压前传过程。采用该模型对"等直段+扩张段"、"后向台阶"和"支板喷射"三种典型构型燃烧室流场进行了计算。结果表明:所建模型正确地反映了超声速燃烧室流动中的物理化学过程;与实验数据比较,模型计算出的壁面压力分布比没有考虑激波串结构的模型符合的更好。  相似文献   

13.
喷管碳基喉衬的烧蚀   总被引:3,自引:0,他引:3  
邓跃君  蔡峨  冯文澜 《航空动力学报》1989,4(3):250-252,296
一、计算方法和结果 喷管材料的烧蚀主要是热和化学作用的结果。热量来自碳与燃气中的氧化元素之间的异相化学反应,以及对流和幅射传热。本文中的解析模型用来预测喷管温度分布及烧蚀率。在处理联结核心流及喷管壁面的边界层流动时,把传热传质数值作为壁内导热计算的输入数据。边界层的边界条件是由一维无粘定常流的解来确定的。在材料响应的分析中介入了幅射边界条件,在UTC数据上引入了一个有效辐射系数。用有限元计算方法求解瞬态热传导方程来确定喷管壁内温度分布随时间的变化关系。  相似文献   

14.
目前炉内两相流动和煤粉燃烧数值模拟中多半用颗粒随机轨道模型和单流体无滑移模型,这些模型都难以完整地给出三维空间内颗粒速度,浓度,湍流度分布的信息。主采用双流体-轨道模型(颗粒相连续介质-轨道模型)对一个四角喷燃模型炉内三维湍流两相流动及煤粉燃烧进行了模拟。此模型基于欧拉气相方程组、欧拉颗粒连续方程组和动量方程组以及拉氏颗粒能量方程和质量变化的方程,并使用k-ε-kp两相湍流模型,EBU-Arrhenius湍流燃烧模型,离散坐标辐射传热模型,煤粉颗粒的水分蒸发,热解挥发模型和焦炭燃烧的扩散-动力模型等。热态模拟中,为了减小为信散造成的影响,采用了扭转坐标法(将坐标扭转一定的角度使之与煤粉射流方程一致)。为了检验数值模拟,采用三维相位移普勒测速仪(PDPA)对于冷态模型炉内湍流两相流场进行了测量,得到了两相速度,湍流脉动及颗粒浓度的分布。分别对冷态模炉内两相流动和热态模型炉内三维两相流动和煤粉进行了模拟,冷态两相流动的计算与实验结果的对比表明预报的两相流场是合理的,热态模拟的结果给两相速度,气相温度、组分浓度及壁面热,显示出靠近出口处气相速度和温度分布不对称,造成一个局部高温区。  相似文献   

15.
根据控制体理论,建立了涡喷发动机中压气机的逐级数学模型。采用特征线关系数值求解质量、动量和能量方程。方程中的叶片力和轴功由稳态的级特性提供,并由一阶滞后方程考虑其动态效应。该模型可以模拟进口温度(或压力)瞬变下压气机的逐级响应,寻找首先失速的关键级。数值结果表明,引起失速的进口温升近似地与进口温升率呈线性关系。  相似文献   

16.
易龙  彭云  孙秦 《中国航空学报》2006,19(3):197-202
随着航空航天技术的发展,飞行器热结构所需承受的温度越来越高,辐射换热变得非常重要;当前大部分商业软件对于辐射问题的有限元计算方法还是基于一致表面温度和辐射热流假设,使得计算精度和网格密度的矛盾越来越严重.进行了选用高阶单元、采用高斯积分精确计算单元表面变辐射热流方法的研究,从而摆脱了一致表面温度和辐射热流的假设,使得在相同网格密度的情况下计算精度大大提高;同时,从包含辐射换热问题的有限元计算方程出发,采用与有限元数值计算时相同的积分方案,只在独立的积分点处计算辐射热流,克服了积分方法计算效率低的缺点.经与ANSYS的计算结果对比,应用辐射热流积分方法于高阶单元能大大提高计算精度;并且在相同计算精度条件下,此方法的计算效率更高,具有一定的实用价值.  相似文献   

17.
The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder.The effects of radiation and convective boundary condition are also taken into account.The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis.The resulting nonlinear momentum,energy and nano particle equations are simplifed using similarity transformations.Numerical solutions have been obtained for the velocity,temperature and nanoparticle fraction profles.The influence of physical parameters on the velocity,temperature,nanoparticle fraction,rates of heat transfer and nanoparticle fraction are shown graphically.  相似文献   

18.
高温圆管内多孔介质耦合换热的辐射作用   总被引:1,自引:1,他引:0  
陈学  李洋  夏新林  孙创 《航空动力学报》2016,31(10):2437-2442
通过数值模拟圆管内填充多孔介质的辐射对流耦合换热,研究高温固体骨架辐射效应对温度分布及换热的影响.基于局部非热平衡模型分别建立流体和固相能量方程,采用蒙特卡罗法求解固体骨架的辐射换热;对不考虑热辐射引起的温度场偏差和管壁发射率以及多孔结构参数的影响进行讨论.结果表明:多孔固体骨架的辐射效应对入口段温度场的影响明显,不考虑辐射将导致较大偏差,壁温为1500K时最大偏差为16%.管壁发射率对温度场影响较小,壁温为1500K时影响小于3%.孔隙率或孔径增大,壁面辐射热流密度比例增加,辐射效应体现明显.   相似文献   

19.
在任意曲线坐标系下对带有横向波纹隔热屏、外冷却通道和尾喷口的涡喷加力燃烧室的三维热态流场进行数值模拟.利用椭圆型微分方程和区域法生成三维贴体网格, k-ε模型预估紊流特性, EBU-Arre-henius紊流燃烧模型估算化学反应速率, 六通量模型预估辐射通量以考虑其对壁面和气流温度的影响.在非交错网格系统下应用混合差分格式离散控制方程, SIMPLE算法求解离散方程, 数值分析两种进口气流参数分布对加力室热态流场和壁温分布的影响.所得计算值与试验数据基本相符, 表明计算方法合理.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号