首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热化学非平衡流模拟中广泛应用的双温度或多温度模型不能描述分子在各振动能级上的分布,只能假设其满足振动温度下的Boltzmann分布。通过采用态-态模型研究非平衡过程中粒子的能级分布特点,有望为改进双温度或多温度模型提供思路。对静止的N2/N气体混合物,在各类不同初始条件和控制温度、压力下,采用态-态模型研究气体的化学组成和分子振动能级分布演化规律,分析各类微观过程的特征与贡献,结果表明:平动-振动能量交换过程起支配作用,促使振动能级分布趋于平动温度下的Boltzmann分布,而振动-振动能量交换过程主要影响能级分布变化的过渡过程特点;离解区和复合区能级分布的变化特点不同;关于非平衡过程中粒子微观分布的研究结果可为改进高超声速非平衡流模拟中的热化学模型提供参考依据。  相似文献   

2.
热化学非平衡流辐射流场工程计算方法研究   总被引:2,自引:0,他引:2  
黄华  瞿章华 《航空学报》2000,21(5):434-436
从耦合辐射的轴对称热化学非平衡 N-S方程出发,采用双温度、1 1组元反应气体模型,耦合修正的Nicolet单温度辐射模型,利用隐式 NND有限差分格式和时间预处理技术数值求解了 FIREII飞船热化学非平衡辐射流场,得到的辐射传热结果与有关实验结果和更细致的热化学非平衡辐射模型的结果进行了比较  相似文献   

3.
基于多温度模型的基本思想,从惟象角度分析了非平衡状态下双原子分子振动态分布的特征信息。研究了双原子分子在非平衡弛豫过程中振动—离解耦合特点,认为较低和较高振动态首先达到相对独立的准平衡状态,较高振动态的局域离解造成的相对数密度分布密度差将导致各个振动态数密度从新分布;而这一过程也是系统通过V-V传能、T-V传能不断把位于较低振动态的分子通过中间振动态激发到较高振动态,为离解做能量积累的过程。通过对目前较常用的Hammerling假设的修正,用中间振动态数密度分布情况重新定义了双原子分子非平衡态下的振动温度,建立了新的关联振动-平动温度的双原子分子振动态非平衡近似分布模型。通过模拟氮分子非平衡激波加热过程结果表明,本模型较好地预报了氮分子非平衡振动松弛过程中"诱导期"以及平均振动能、振动温度的时间特性。  相似文献   

4.
利用数值求解热化学非平衡Navier-Stokes方程的方法,建立了考虑一个和多个振动温度的高超声速热化学非平衡流场的CFD计算程序,并对半球模型和球锥模型进行了数值计算,研究结果表明:(1)各个分子组分的振动温度分布于考虑一个振动温度模型的振动温度周围,即一个振动温度模型的振动温度是多个振动温度模型的各个分子组分振动温度的一种平均值;(2)在模型身部,振动温度的峰值高于平动温度的峰值;在模型近尾出现振动温度冻结并高于平动温度。  相似文献   

5.
高超声速喷管非平衡黏性流动的数值研究   总被引:1,自引:0,他引:1  
分别采用平衡气体模型、化学非平衡气体模型和热化学非平衡气体模型,通过求解轴对称Navier-Stokes方程组,数值模拟了法国Marseille高焓激波风洞锥型喷管(H0=10.3MJ/kg),分析了热化学非平衡效应对喷管流动的影响,给出了平动温度、振动温度、马赫数和组分质量数在轴对称线上的分布与喷管出口附近的速度和温度沿径向分布等结果。计算结果表明:化学反应速度加快,会导致喷管出口温度增加,振动能的冻结会导致喷管出口温度降低。  相似文献   

6.
飞行器以很高的马赫数再入大气层时 ,头部激波层、尾迹的气体辐射产生的紫外、可见、红外特征信号 ,是地面监测和反导制导系统探测、识别的主要依据 ;同时 ,头部气体层热辐射也是再入体壁面加热热流的重要源项。激波层内高温气体吸收系数是目标紫外、可见光、红外辐射特性计算、热防护计算和气动流场辐射场耦合计算的基本参数。本文分析了再入过程中高超声速稀薄气体流的非平衡现象 ,采用三温度模型 (电子能温度 Te、振动能温度 TV、转动和平动能温度 TR)来表征激波层内非平衡态的气体组份各个能级占有数分布 ,并由原子分子辐射理论直接计算 N2 ,N+ 2 ,N,N+ ,O2 ,O+ 2 ,O,O+ ,NO,NO+和 e-等 1 1种主要空气组元各种能级跃迁对辐射的贡献 ,最终得到平稀和非平衡高温空气吸收系数计算模型。计算结果可见光区与试验结果符合较好 ,紫外、红外区结果稍差  相似文献   

7.
利用数值求解一个和多个振动温度热化学非平衡Navier-Stokes方程的CFD计算程序,对爆轰风洞球锥试验模型的热化学非平衡绕流流场进行了数值模拟,分析了分子组分振动温度在全流场(头身部流场和底部流场)中的分布规律.研究结果表明:(1)计算的压力、电子数密度以及流场的光辐射数据与试验数据符合较好;(2)在再入体身部,大多数分子的振动温度峰值大大高于平动温度的峰值;在再入体近尾出现振动温度冻结并大大高于平动温度的现象;CO2的两个振动态的振动温度分布非常接近平动温度分布.  相似文献   

8.
利用数值求解三维热化学非平衡Navier-Stokes方程的方法和多块网格技术,数值模拟了典型高焓激波风洞锥型喷管的三维非平衡流场,分析了热化学非平衡效应对喷管流动的影响,给出了平动温度、组分N2和O2振动温度、马赫数和组分质量分数在轴对称线上的分布,也给出了喷管出口附近的速度和温度沿径向分布等结果,获得了喷管流场的详细信息,并与已经存在的采用轴对称Navier-Stokes方程计算的结果,进行了比较,二者吻合得很好.计算结果表明:目前的代码是可以模拟多块结构网格下的热化学非平衡流动的.  相似文献   

9.
采用单、双温度模型两种粘性激波层方程组对弹头驻点区非平衡流场作了数值模拟。计算结果表明,在算例条件下热非平衡与化学非平衡的耦合效应对壁面热流和电子密度有明显影响。文中给出了完全催化壁和非催化壁两种情况下以及采用不同振动松弛时间公式时上述影响的变化规律。  相似文献   

10.
高焓激波风洞喷管流场非平衡特性研究   总被引:1,自引:0,他引:1  
高焓激波风洞是开展高超声速流动研究的重要地面模拟设备,但其产生的高焓气流在喷管中的膨胀过程是一种典型的热化学非平衡流动,试验段特征参数通过直接实验测量难以完全确定。本文通过求解耦合双温度模型的轴对称Navier-Stokes方程,研究了高焓激波风洞中典型状态下气流的热化学非平衡流动特性,分析了焓值对非平衡特性的影响规律。结果表明,喷管出口自由流均匀区域达到出口截面直径的75%以上,能够为实验提供足够的空间;喷管出口自由流处于热化学非平衡状态,在喷管喉道后约1/5喷管长度处气流即已处于冻结流状态,组分浓度和振动温度随气流流动基本不变;焓值在8.4MJ/kg~19.5MJ/kg之间变化时,非平衡程度随着焓值的增加而增强,但是低焓值时非平衡程度的增强更加剧烈。  相似文献   

11.
耦合求解热化学非平衡流控制方程和烧蚀壁面边界条件,进行存在石墨烧蚀的压缩拐角流场数值模拟。流场化学反应采用16组元(N2,O 2,NO,N,O,NO +,N+2,O +,N+,CO,CO 2,C,C2,C3,CN,e-)29个反应的非平衡模型,热力非平衡的双温度模型下,不同反应采用不同控制温度。石墨材料表面反应包括碳的氧化反应、碳催化的O 原子复合反应和碳的升华反应。对15°、18°、24°压缩拐角模型,在自由流 Ma =10~30,总焓值6~55 MJ/kg 范围,分别进行无烧蚀的壁面催化与非催化条件和石墨烧蚀条件下的流场计算,分析各类条件下的流场结构、流动分离特性以及流场热化学参数分布特点,研究壁面条件对流动特性的影响。结果表明:流动分离可能性和分离区范围随着压缩拐角斜面倾角增大而增大,随来流马赫数增大而减小;相对于低壁温条件,无烧蚀的辐射平衡壁温和壁面烧蚀条件下流动分离区增大,斜面上压力、摩阻和热流峰值点也有所后移。  相似文献   

12.
本文从轴对称热化学非平衡N-S方程出发,采用双温度、十一组元反应气体模型,利用隐式NND有限差分格式的时间预处理技术数值求解了FIREII飞船热化学非平衡流场。文中同时给出了七组元模型的计算结果,并进行了结果比较。  相似文献   

13.
采用轴对称NS方程,数值研究不同热化学非平衡模型对高超声速喷管流场的影响,包括:(1)不同组元数的高温空气模型(5组元、7组元1、1组元)的比较;(2)热力非平衡(双温度)的化学动力过程与热力平衡(单温度)的化学动力过程的比较。计算结果表明,高焓风洞实验条件下喷管流场处于热力和化学都是非平衡的状态。在计算条件下,数值模拟以采用7组元或11组元的热化学非平衡模型为宜。  相似文献   

14.
高超声速热化学非平衡钝体绕流数值模拟   总被引:4,自引:4,他引:0       下载免费PDF全文
杨恺  原志超  朱强华  高效伟 《推进技术》2014,35(12):1585-1591
对高超声速热化学非平衡钝体绕流进行研究,发展了高温热化学非平衡条件下的高超声速气动热数值模拟方法。采用二阶精度迎风TVD格式的N-S方程有限体积法多块结构网格求解器,考虑了空气5组分及化学非平衡效应的影响,对组分生成源项及振动能源项采用了点隐式的处理,提高了计算效率。对球锥模型和RAM-CII飞行实验等算例进行了数值气动热模拟,分析了不同非平衡模型在热化学非平衡条件下流场的影响。计算结果表明建立的数值模拟方法具有较高的精度。  相似文献   

15.
为研究热化学非平衡来流条件下热化学模型等计算设定对斜激波压缩流动计算结果的影响,针对尖劈构型和相应的前缘钝化构型的高焓激波风洞实验,采用多种计算设定开展详细的数值模拟研究。计算结果表明,计算采用不同热化学模型,以及来流设定为振动冻结/平衡/非平衡状态,会导致斜激波激波角等参数存在一定差别,其中激波角差别可达约2%。当来流速度一定时,过斜激波后分子内能增量在平动转动能和振动能上的分配方式的差别决定了激波角的差别。前缘钝化情形下,采用不同计算设定所得激波角之间的关系和尖前缘构型的规律一致;但是,采用不同计算设定所得斜激波到壁面距离之间的关系和尖前缘构型的规律有差别,这源于钝化前缘的激波脱体距离的影响。对于自由来流下的斜激波压缩流动问题,若考虑了分子振动能激发但未考虑热力学非平衡(例如热完全气体模型、考虑空气反应的单温度模型等),就斜激波激波角等参数而言,计算误差比量热完全气体模型计算误差更大。  相似文献   

16.
采用描述电子能非平衡的三温度模型,结合11组分空气的化学反应模型,对多种高速高温热化学非平衡流场开展数值模拟,并与描述电子能平衡的两温度模型结果进行对比,研究电子能非平衡对高超声速流场特性的影响。圆球弹道靶试验算例表明电子能非平衡不影响激波脱体距离。RAM-C II飞行器的4个飞行工况算例表明,尽管两温度和三温度模型结果存在差异,但二者电子数密度分布的趋势和量级接近,均可与飞行试验数据保持一致,其中三温度模型的预测效果更好。FIRE II飞行器极高温流场模拟结果显示,电子能非平衡几乎不影响飞行器表面的对流传热。  相似文献   

17.
热化学非平衡流动红外辐射计算分析   总被引:1,自引:0,他引:1  
首先通过求解热化学非平衡N-S方程的数值模拟方法,获得高焓风洞钝锥体模型的绕流及近尾的高温流场参数.然后从辐射传输方程出发,采用带辐射模型,并利用所获得的流场参数,计算分析了高温流场在λ=3μm-6μm红外波段的辐射,计算和测量结果具有较好的一致性.该项研究为今后进一步研究高温非平衡气体辐射特性奠定了基础.  相似文献   

18.
再入地球大气层时,飞行器的再入速度极高,面临严重的气动加热问题。为了研究高焓流动导致的热化学非平衡现象,在高焓膨胀风洞FD-14X中开展了球头外形的热流测量试验以及CFD仿真模拟。FD-14X为中国空气动力研究与发展中心新建成的高焓膨胀风洞,速度模拟能力达到第二宇宙速度,总温模拟能力超过10 000 K,能够产生总焓70 MJ/kg的试验气体。试验来流总焓16.9~63.5 MJ/kg,球头直径20~50 mm,流场采用自发光拍照,同时CFD仿真采用Park双温非平衡模型计算球头绕流流场。试验与仿真结果表明:来流总焓大于5 MJ/kg时,球头绕流场存在显著的热化学非平衡现象;304钢模型壁面在来流总焓小于20 MJ/kg时表现为非催化壁面特性,在来流总焓大于30 MJ/kg时表现为催化壁面特性;当球头表面镀氧化锆膜、来流总焓49.5 MJ/kg时,球头壁面表现为非催化壁面特性。  相似文献   

19.
高超声速边界层流动转捩是近期空气动力学研究的热点问题。对于环境扰动较小的自然转捩过程,稳定性分析已被证明是研究扰动演化的重要手段。另一方面,高超声速边界层内的温度会随着马赫数的升高而快速上升,极高的温度会引起所谓的高温真实气体效应,使得量热完全气体假设失效,从而对边界层稳定性和转捩产生影响。本文针对高温热化学非平衡气体,利用空气5组分模型开展了平板边界层的线性稳定性分析,重点研究了热化学过程对模态稳定性的影响,并探究了边界层离散谱模态的演化和同步过程。研究表明,对于由第二模态主导的高超声速二维边界层:(1)扰动相比基本流更趋向于热化学冻结态;(2)扰动方程中新出现的非平衡源项的扰动项对稳定性影响很小,非平衡过程主要是通过改变基本流剖面来间接影响稳定性;(3)声速是影响第二及更高模态的重要参数,热化学平衡态假设引起的声速计算式的变化能够解释边界层温度和厚度降低时第二模态频率反而降低的非常规趋势。  相似文献   

20.
真实气体效应下高马赫数内转进气道特性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为初步研究高马赫数内转进气道在真实气体效应下的工作特性,首先设计额定工作状态Ma=12的高超声速内转进气道,再结合不同气体模型对其进行数值模拟。研究结果表明:化学非平衡气体在流场结构、工作性能和气动加热方面与热完全气体较为相近,与热化学非平衡气体存在一定差别。离解反应发生在边界层内和低速涡流区内,热化学非平衡气体的离解反应程度比化学非平衡气体大。在隔离段内激波反射处,相比完全气体,化学反应气体的静温降低了2000~2500K。高热流区在上壁面喉道位置与下壁面激波反射点位置附近,温度较高的等温壁面、热化学非平衡气体均可降低壁面热流密度,不同壁面条件对隔离段出口性能参数影响较为明显。真实气体效应、壁面温度对隔离段涡流区的影响较为复杂,有待进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号