首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
边界层吹吸气对高负荷扩压叶栅性能的影响   总被引:4,自引:4,他引:4       下载免费PDF全文
周杨  邹正平  刘火星  叶建 《推进技术》2007,28(6):647-652
采用边界层流动控制能够有效抑制扩压叶栅的流动分离。以某大弯折角低稠度扩压叶栅为研究对象,利用数值模拟手段研究了原型、叶片表面边界层单独吹气以及吹吸气相结合等边界层控制手段下的流场和叶栅性能变化情况。结果表明,无论是单独吹气还是吹吸气相结合的边界层控制方法,都能有效控制扩压叶栅中的边界层分离,从而较大幅度地增大叶栅负荷,并降低气动损失;计算表明,吹气和吸气的效果不尽相同,且吹吸气口位置及吹吸气流量对边界层的流动亦有较为明显的影响。其中采用1.7%的吹气流量,结合1.38%的吸气量,可以使静压增压比提高15%以上,而损失系数降低至原型的20%以内。  相似文献   

2.
为了研究不同射流环境对航空发动机涡轮叶片气动损失的影响,采用数值模拟的研究方法,分别考虑压力面与吸力面2 种气膜冷却打孔方案,总结在不同吹风比条件下叶栅通道内部流场环境特点,以及不同流场环境下叶栅损失的变化规律。结果表 明:叶栅通道内部气膜冷却射流环境分为低动能比射流环境(动能比小于1)与高动能比射流环境(动能比大于1),这2种射流环境 的边界层、叶栅出口二次流损失、动能亏损情况以及叶栅出口的总压损失系数有不同的变化特点:在低动能比环境下,冷气射流会 贴附壁面流动,进而影响边界层;在高动能比环境下,冷气射流直接与主流掺混。吸力面的冷气射流对叶栅气动损失有较大影响, 当射流动能较大时,使叶栅总压损失变化50%以上;而压力面的冷气射流对叶栅气动损失影响很小,经过计算,压力面的冷气射流 仅使叶栅总压损失系数最大变化0.64%。  相似文献   

3.
针对叶型转折角为108.1°的涡轮直叶栅,利用低速风洞,实验研究了带围带和无围带情况下叶栅出口截面的流场结构和叶栅气动性能.研究了不同围带上腔间隙、不同来流冲角情况下叶栅出口截面二次流结构、气流角分布及总压损失系数变化情况.结果表明:相对无围带叶栅,围带能够有效控制叶顶间隙泄漏,降低叶栅气动损失;随着围带与上端壁之间高度的增大,泄漏流体增多,导致泄漏流体与主流掺混的气动损失增大.对于所研究的叶栅,围带与端壁间的间隙高度不应大于1%叶展.冲角变化影响叶栅中的三维涡系结构及其强度,对叶片吸力面静压分布影响较为明显.适当的正冲角能够改善流动状况,进而提高大转折角叶栅的气动性能.   相似文献   

4.
弯曲/倾斜叶片对大展弦比涡轮气动性能影响   总被引:1,自引:1,他引:0  
为了获得弯曲/倾斜导叶对大展弦比低压涡轮气动性能的影响,通过求解基于耦合转捩SST湍流模型的雷诺平均N-S方程组,对GE-E3低压涡轮叶栅的进行了全三维粘性定常与非定常数值模拟。研究了弯曲/倾斜导叶对涡轮级效率的影响,分析了对导叶叶栅气动性能、导叶扩散因子与边界层发展的作用,以及对下游动叶气动性能和动叶吸力面流动特性的影响。结果表明,正弯导叶减小了二次流损失却带了更大的叶型损失,降低了涡轮级效率,而正倾斜改变了上下端壁的二次流损失分配,对总的叶型损失影响较小,在一定角度下能够改善大展弦比涡轮叶栅的气动性能。  相似文献   

5.
给定不同型式的进口边界层,在两种不同亚音速条件下对一平面扩压静叶栅的弯叶片流场进行了数值模拟。结果表明弯叶片对扩压叶栅的改善的能力受进口边界层的特征影响。这种影响分为两个方面:(1)边界层厚度的影响和(2)边界层动量损失厚度的影响。边界层越厚或动量损失厚度越大,在低马赫数条件下弯叶片对吸力面角区密流增加越明显,从而更大程度地提高了端区的流动性能,降低了叶栅损失。在高马赫数条件下,若边界层越厚或动量损失厚度越大,角区密流虽变化不大,但因端区损失较大,其性能的提高会给叶栅总性能的改善带来较大的收益。   相似文献   

6.
压气机叶栅内不同高度端壁翼刀的实验   总被引:1,自引:0,他引:1  
通过采用五孔探针在低速平面风洞上测量压气机叶栅流场的方法,研究了不同高度和周向位置的端壁翼刀对叶栅能量损失及二次流速度矢量的影响.结果表明,使叶栅总损失降低的最佳周向安装位置是距离吸力面70%相对节距处,最佳翼刀高度为5 mm;存在使叶栅总损失降低的极限翼刀高度.当翼刀高度增加时,翼刀涡更加清晰.安装翼刀可以改变叶栅端壁损失的分布,进而控制吸力面/端壁角区的流动,改善叶栅的气动性能.   相似文献   

7.
超声速来流基元叶型前缘加工误差气动敏感性分析   总被引:4,自引:4,他引:0       下载免费PDF全文
陈为雄  王掩刚  马峰  刘乾 《推进技术》2019,40(10):2235-2242
为研究叶型前缘加工误差对叶栅气动性能敏感性,以NASA Rotor 67转子70%叶高截面基元级叶型为研究对象,选择Clamped型非均匀B样条曲线实现叶型前缘数学描述。采用单因素法建立叶型前缘加工误差模型,提炼出叶片弦长误差、前缘轮廓度误差、几何进气角误差三个误差模型;随后结合L9(34)正交实验及数值模拟方法研究超声速来流条件下三维直列叶栅不同前缘误差类型对叶栅气动性能的敏感性。正交实验极差分析及显著性分析均表明:前缘轮廓度误差FP是影响叶栅气动性能的主要影响因素(75%以上可能性),叶栅性能随前缘轮廓度增加呈现恶化趋势,即叶型前缘越厚,叶栅总压损失越大,扩压能力越小。进一步分析轮廓度误差对叶栅性能影响机制得出:激波损失是叶栅性能随轮廓度误差加大而恶化的重要原因。  相似文献   

8.
跨声速叶栅叶表附面层抽吸效应试验   总被引:4,自引:3,他引:1  
以某跨声速、吸附式叶栅为研究对象,在暂冲式叶栅风洞上对其进行了多个状态的吹风试验,对比分析了在通道存在激波条件下,激波前、后抽吸对叶栅性能以及附面层的影响效应.研究结果表明:激波前抽吸使得抽吸缝局部马赫数增大,恶化叶栅性能;激波前抽吸对于来流高亚声和超声速的叶栅损失系数影响趋势一致,随着抽吸系数增加损失系数增加,并且当抽吸系数大于0.2%时,损失系数增加较快;波后抽吸可明显改善叶栅性能,抽吸量越大,抽吸正效应越明显,相比于未抽吸条件,抽吸系数为0.8%时损失系数降低8%、总压恢复系数提高5%.   相似文献   

9.
在一套典型的低负荷矩形涡轮静叶栅中开展弯叶片影响叶栅内部流谱结构与气动性能的实验研究。利用微型5孔探针分别对6套叶栅的进出口流场进行详细测量,并在叶栅表面和端壁进行油流显示实验。从定性和定量的角度考察了叶片弯曲对壁面流谱拓扑结构、出口涡量、出气角及二次流损失分布的影响,总结了弯叶片影响边界层迁移与二次流损失发展的规律。  相似文献   

10.
间隙变化对压气机静叶叶栅气动性能的影响   总被引:1,自引:0,他引:1  
王子楠  耿少娟  张宏武 《航空学报》2016,37(11):3304-3316
利用压气机平面叶栅试验,在大负攻角工况、设计工况和角区失速工况下,研究间隙变化对叶栅气动性能的影响,并分析内部流动变化与气动性能变化的关联。试验结果表明,不同工况下间隙变化对流场结构的影响不同,因而对叶栅性能的影响规律也不同。大负攻角工况下,不同间隙叶栅内在压力面前缘附近都存在一对由端壁向叶展中部发展的分离涡,间隙增大可以使叶栅总损失近似线性减小,并使间隙侧气流折转能力略微提升。设计工况下,无间隙侧吸力面角区存在轻微的角区分离,小间隙(0.2%展长)的引入首先会加剧间隙侧角区分离,当间隙进一步增大时,角区分离消失并形成泄漏涡结构。叶栅总损失随间隙增大呈先增大后减小再增加的趋势,角区分离的消除有助于提高间隙侧气流折转能力。角区失速工况下,间隙的引入可以削弱并移除间隙侧角区失速结构,从而使叶栅总损失下降,并在0.5%展长间隙时达到最小值,同时间隙侧气流折转能力得到增强。当间隙进一步增大时,叶栅损失变化不大。在间隙变化过程中,两侧端部流动结构产生相互影响,使两侧流场性能变化呈相反趋势。通过对比全工况范围内的气动性能,叶栅在选取0.5%展长间隙时整体性能最优。  相似文献   

11.
局部附面层吸除对高负荷扩压叶栅气动性能的影响   总被引:1,自引:0,他引:1  
实验研究了低速条件下局部附面层吸除对高负荷扩压叶栅气动性能的影响.采用五孔气动探针测量了叶栅出口截面气动参数,并对叶片表面静压进行了测量,详细分析了局部吸气方式、吸气量和吸气位置对叶栅出口截面总压损失和负荷能力的影响.结果表明,采用吸力面两端吸气和中间吸气方式均能够有效吸除叶栅流道内低能流体,增加叶栅的气动负荷,从而提高叶栅的气动性能;采用吸力面两端吸气对叶栅气动性能的改善要优于吸力面中间吸气;叶栅气动性能的改善主要在靠近叶展中部区域,而对角区核心区和端部区域的影响并不明显.   相似文献   

12.
高负荷压气机中的大尺度流动分离是导致其性能下降的主要原因,通过数值方法研究了扫频式射流控制角区分离、减小气动损失的效果,并以模型方程代替实际射流器,讨论了扫频式射流的基本控制参数对压气机叶栅流场控制效果及气动性能的影响。结果表明:扫频式射流使得流场呈现出稳定的周期性变化趋势,且存在一个扫频频率,使得超过该频率后的控制效果趋于稳定;合理选择扫频激励参数对实现流动分离的控制至关重要。在本文的方案中,采用较小的扫频射流角和射流流速能取得较好的控制效果,而更大的最大扫频摆角能强化这种控制效果,时均总压损失最大减小6.1%;扫频式射流能够在更大范围内提高吸力面边界层低能流体的动能,以更好地限制角区分离沿叶高方向发展,从而改善对角区分离的控制效果。  相似文献   

13.
一种叶顶叶栅结构对压气机间隙流动的影响   总被引:1,自引:0,他引:1  
为减小压气机间隙流动带来的流动损失,提出了一种新的叶顶结构,即在常规叶片叶顶上构造出由数个小叶片组成的叶栅.通过对具有该结构叶片的三维流场进行数值模拟,分析了端壁移动对压气机间隙流场的影响.结果表明:该结构明显改善了叶顶附近的流动状况,从泄压和导流两方面抑制了叶顶附近流体从压力面向吸力面的泄漏,有效削弱泄漏涡的强度,进而减小泄漏涡扩散带来的损失,提高了压气机气动性能,相比常规叶片叶栅出口总压损失系数减小达1.158%.   相似文献   

14.
实验研究了冲角变化对不同掠型叶片组成的平面扩压叶栅壁面静压分布的影响。结果表明,变冲角时弯掠叶栅端部横向、径向及流向压力梯度分布改善,正冲角时端壁与吸力面附面层相互作用减弱,避免了低能流体在吸力面角区的积聚及分离,同时也使得中径附近损失有所增加,但其总损失没有明显增大;负冲角时弯掠叶栅中径附近的损失增加在总损失中占主导地位,气动性能下降。在较大正冲角时弯掠叶栅仍能保持角区流动的稳定,若增大中径处的设计冲角能够获得更好的气动性能。  相似文献   

15.
This article is aimed to experimentally validate the beneficial effects of boundary layer suction on improving the aerodynamic performance of a compressor cascade with a large camber angle. The flow field of the cascade is measured and the ink-trace flow visualization is also presented. The experimental results show that the boundary layer suction reduces losses near the area of midspan in the cascade most effectively for all suction cases under test. Losses of the endwall could remarkably decrease only when the suction is at the position where the boundary layer has separated but still not departed far away from the blade surface. It is evidenced that the higher suction flow rate and the suction position closer to the trailing edge result in greater reduction in losses and the maximum reduction in the total pressure loss accounts to 16.5% for all cases. The suction position plays a greater role in affecting the total pressure loss than the suction flow rate does.  相似文献   

16.
前缘对扩压叶栅叶型气动性能具有重要影响,圆弧形或椭圆形前缘吸力面和压力面侧为对称形状,未针对两侧流动差异进行不同设计。为进一步提升扩压叶栅气动性能,发展了一种基于三次非均匀有理B样条(non-uniform rational B-splines,NURBS)曲线的非对称前缘设计方法,在保证曲率连续的前提下,实现吸、压力面两侧非对称的前缘构造。将设计方法应用于两圆弧形前缘叶型改型设计,数值结果表明:与原始叶型相比,总压损失系数可分别降低26.3%和23.5%,提高了整体气动性能;同时与对称曲率连续前缘相比,在51.83°进口气流角下吸力峰强度降低13.4%,前缘转捩位置推后4.6%弦长,在大进口气流角下具有更好的气动性能。   相似文献   

17.
为了探究直孔射流对压气机叶栅的影响,通过实验方法,结合流场显示技术和流场测试技术,对无控叶栅和直孔射流方案下的压气机平面叶栅在正攻角下的流场结构和气动性能进行了分析。结果表明:无控叶栅中吸力面存在三个螺旋点,而不同射流方案下螺旋点的数量和位置变化明显;无控叶栅端壁存在一个从吸力面起始的分离区,布置射流孔后,在射流孔前发展出马蹄涡,马蹄涡的两个分支的发展情况及其对流场影响随着不同射流方案呈现出不同的特点;射流孔的位置对控制效果有明显的影响,最佳方案减小了3.2%的总压损失,增大了1.86%的通流流量;在最佳方案下,吸力面螺旋点数量减少到了1个,端壁没有明显的尾迹出现,出口处高损失区的欠偏转和端区的过偏转均有所减弱。  相似文献   

18.
为避免高马赫数、大攻角来流引发的叶片颤振,将串列叶片技术引入到超声速通流风扇叶栅中,对其进行串列改型及气动性能研究。利用准二维数值模拟,对串列叶片前、后排叶片的弦长比参数进行了详细的对比研究。结果表明:影响气动性能的关键因素是后排叶片进口压力侧激波的落点,在本文研究条件下,随着弦长比的减小总压损失呈减小的趋势,当弦长比由0.99减小到0.43时,设计攻角下,15°折转角叶型总压损失可减小27%,30°折转角叶型总压损失可减小38%。进一步的研究表明,通过减小弦长比可有效控制后排叶片前缘斜激波在相邻叶片吸力侧的落点以实现损失降低,并且这种降低效应在小弯角叶型上比大弯角叶型更容易实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号