首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
相对位姿是装配过程中的一项重要监控项。针对大尺度部件对接过程中的相对位姿测量需求,提出了一种基于视觉的相对位姿实时测量方法。该方法利用单目视觉技术,通过采集合作靶标的图像,实时解算大部段间的相对位姿,用于辅助大尺度部件的装配。首先,设计了一套相对位姿实时测量系统,包括搭载单目相机的视觉测量单元,以及用于辅助位姿解算的合作靶标;其次,对相对位姿测量的完整流程进行了研究,包含系统标定方法与实时位姿解算方法;最后,在实验室环境下对位姿测量系统的精度进行测试。试验结果表明,位姿测量系统在垂直于光轴方向的重复精度可达0.02mm,沿光轴方向重复精度优于0.2mm,输出位姿结果时间低于0.3s;对多测量单元组网测量进行了仿真计算,垂直于光轴方向的重复精度优于0.1mm,沿光轴方向重复精度优于0.2mm,输出位姿结果时间优于1.3s。试验结果表明,提出的方法可满足一般大尺度部件对接过程实时位姿监控与对接状态评估的需求。  相似文献   

2.
在平台惯性/天文组合导航系统中,星敏感器可由单星方案或双星方案测量平台失准角。本文推导了两种方案的算法,并进行了精度分析和仿真,提出了提高测量精度的途径。通过对影响星敏感器姿态测量精度的因素进行仿真,论文提出,采用大视场、测量噪声小的星敏感器克服单星方案中绕星敏感器光轴方向姿态误差太大的问题,从而满足平台惯性/天文组合导航系统对星敏感器测量平台失准角的精度要求。  相似文献   

3.
单相机迎角测量中振动影响研究   总被引:1,自引:1,他引:0  
孙岩  姚海艳  张征宇 《航空学报》2013,34(3):525-532
从描述像空间坐标与物理空间坐标关系的共线方程出发,推导出单相机迎角测量中模型迎角关于相机外方位元素的计算公式。在单相机迎角测量中模型表面标记点展向坐标Y不变的假设下,研究了2m量级风洞中,相机位于5个不同位置时,3个角外方位元素(φ,ω,κ)和模型侧滑角β在-2°~2°之间振动对迎角测量结果的影响。模拟结果表明:φ和κ的振动对迎角测量结果影响较大,且该影响对相机位置和模型迎角的变化不敏感;在相机位于法向投影位置(相机光轴与Y轴平行)时,ω与β的振动对迎角测量结果影响非常小,可以忽略,但影响量随相机位置偏离法向投影位置迅速增加。  相似文献   

4.
为了提高卫星测量地磁场参数的精度,必须提高卫星上星敏与磁强计安装矩阵的测量精度,因此,提供了一种借助地磁场与地面观星对星敏与磁强计安装矩阵进行户外地面标定的方法.首先建立了三轴磁强计的误差模型,利用磁强计在地磁场中进行翻滚试验标定了误差模型系数,同时给出了3个敏感轴矢量在地理坐标系下的表示.其次利用星敏观星,测量了星敏光轴单位矢量相对地理坐标系的表示.最后以地理坐标系为桥梁,给出了星敏与磁强计之间的安装矩阵.对该方法进行了仿真,结果表明其能有效准确地辨识出磁强计误差模型中的各项误差系数以及星敏与磁强计安装矩阵.  相似文献   

5.
相机的制造和装配误差难以完全消除,导致相机的光学系统存在不同程度的非线性光学畸变现象,故相机标定对确保风洞模型位移视频测量的精度至关重要。针对1m。以上的台阶标定块制造成本高、维护困难,提出基于距离标尺的相机标定方法,推导包含非线性畸变模型的共线方程,建立适应中国大尺寸风洞的低成本相机标定系统,确保模型位移视频测量相机的自校正精度。2m超声速风洞的某跨大气层飞机测力试验中,采用该方法校正DALSAe相机后,各阶梯迎角测量精度以≤0.00772。(达到高速风洞测力试验迎角精度的先进指标),因此具有实用价值。  相似文献   

6.
首先通过实验分析不同工艺参数下对去除函数稳定性的影响,并进行了仿真分析,确定了机床的敏感方向;其次,对磁流变机床运动轴误差进行了测量,分析这些误差引起法线方向误差的大小;最后,实验验证采用较大的压深和补偿法线方向误差可以有效提高机床的加工精度.  相似文献   

7.
针对三轴稳定静止轨道气象卫星图像运动补偿技术,分析了轨道运动误差源对有效载荷成像仪成像光轴的影响.基于轨道确定数据,采用空间成像矢量修正方法,对轨道运动引起的光轴偏离进行补偿.根据高分辨率成像对光轴高指向精度的指标要求,研究了轨道确定误差和有效载荷伺服控制系统误差对图像配准精度的影响关系,并指出了进一步提高图像配准精度的措施.仿真结果表明了补偿方法的可行性.  相似文献   

8.
由于中国深空干涉测量系统无法采用短时差分标校,使得实时测量精度较差,误差来源主要包括对流层延迟模型误差和钟差模型误差。为了提高实时测量精度,基于最大值最小准则,对对流层天顶延迟进行精确修正;引入邻近估计与线性回归模型,实现了高精度的钟差非线性预报。经任务数据验证,对流层延迟精修正模型预报值与实测值的差异最大值优于0.33m(仰角≥10°);相对EGNOS和"EGNOS+GMF"模型,该误差减小约1个数量级;相对线性预报,非线性预报误差减小约半个数量级。可为我国后续深空探测任务提供高精度对流层延迟和钟差建模及预报。  相似文献   

9.
提出了一种旁置式的大型齿轮测量装置,分析了影响该装置测量精度的主要误差来源及其特性,给出了一种处理多因素耦合影响的灰色动态预报方法.首先,基于测量装置特性,对影响齿形误差测量精度的误差源进行分析和标定,计算出各误差源的灵敏度系数;然后对测得的有限误差数据进行再抽样及灰色生成,分别计算出在每次测量中各影响因素对测量结果的作用大小,之后按照误差合成方法生成误差源耦合作用结果;最后,通过在测量结果中去除耦合作用进而提高大型齿轮齿形误差测量精度.与测量精度为0.5μm的三坐标测量机进行对比测量,结果表明所提出测量装置能满足3级精度以上的大型齿轮齿形误差检测需求.  相似文献   

10.
针对内外分区空间内结构和设备安装的数字化测量需求,研究内外参考点之间的关联技术,构建与外测量精度场相统一的内测量精度场。对于内外空间不同的开口数,利用多测点定位法、二测点和水平仪单站位定位法、二测点和水平仪双站位定位法等方法建立内精度场,实现与外精度场的统一。以某型设备为例进行试验表明,利用内外精度场测量同一检测点进行比较,测量的最大不一致误差为0.14 mm,证明构建模式可行、简单、可靠。  相似文献   

11.
基于单轴速率转台的捷联惯测组合标定方法   总被引:4,自引:0,他引:4  
针对传统的"位置+速率"捷联惯测组合(SIMU)标定方法标定时间长、对标定设备要求高,且需要北向基准等问题,提出了基于单轴速率转台的捷联惯测组合标定方法。该标定方法只用一台单轴速率转台。捷联惯测组合3个轴分别垂直向上及向下时转台匀速旋转一圈,通过对单轴速率转台的姿态角及捷联惯测组合测量模型进行适当的数学变换,分离出捷联惯测组合的误差系数。建立了标定模型,推导了误差系数的分离算法,编排了标定流程,给出了数据处理方法,通过试验验证了方法的有效性。该方法对标定设备要求低,无需北向基准,标定时间短,适合于中等精度捷联惯测组合的标定。  相似文献   

12.
对弹道导弹惯性测量系统进行误差分析和精度指标分配是保证导航精度和武器作战性能的一项重要任务.针对目前惯性导航系统误差分析不全面、精度评估准则单一以及精度指标分配方法不准确的不足,提出了一种弹道导弹惯性测量系统精度指标自适应分配方法,能够按照误差项对精度的影响合理化分配精度指标.该方法首先分析了影响导航精度的所有误差项,并对比各误差项对导航精度的影响.其次,根据总体精度要求值和各误差源在落点精度中的占比,对每项误差系数进行自适应分配,通过逐次调整落点精度中占比最大误差项,最终实现精度指标要求下的最优误差系数指标.在精度指标自适应分配方法基础上,根据落点分布方向性,提出了一种横纵方向误差不等时的精度指标分配方法,更加突出方向性差异.由落点精度模拟可知,经自适应调整后,导弹落点的圆概率误差值(Circular Error Probable,CEP)和横纵向误差值均收敛到精度要求范围内,同时各项误差系数引起的落点精度占比更均匀,该方法为工程设计人员提供了设计依据与思路.  相似文献   

13.
对于工程上的表面热流辨识问题,通常希望能够根据测量精度对辨识结果误差进行快速估计,用以优化测试方案。本文首先对给定单一频率的热流辨识误差进行定量分析,建立了辨识误差与热流频率和测量精度之间的响应面模型。然后对多个给定频率组合情况下的辨识误差规律进行分析,结果显示,频率组合热流中的低频分量能在辨识结果得到较好地复现,高频分量是导致辨识结果出现误差的主要原因。因此,辨识结果精度可以通过最高频率热流分量的辨识误差与测量精度之间的对应关系来进行大致估计。基于这一认识,本文利用时域不同频率组合的热流分量在频域可解耦的性质,通过Parseval定理得出高频分量的能量占比,建立了频率组合热流的辨识误差估计方法,并通过算例进行了验证。  相似文献   

14.
触针表面形貌测量仪是生产科研中应用广泛的仪器,杠杆式触针由于其结构原因,在测量时会产生非线性误差,影响测量结果的精度。介绍了一种气浮触针式测量传感器,触针轴运动方向与位移测量方向一致,有效地避免了非线性误差;在研究中建立了气浮支承式触针测量系统的运动模型,分析了测量系统的动静态特性,研究了影响气浮支承径向动态性能的因素,进行了径向刚度和动态参数的理论仿真模拟,并通过动态特性试验测试和分析得到传感器最大扫描频率为125Hz;搭建了气浮触针式表面形貌测量系统并进行测量试验,得到传感器测量的相对误差为0.8%。  相似文献   

15.
目前,六自由度平台角位置精度的测量大多采用激光跟踪仪等仪器进行,其测量成本高且测试原理及操作过程较为复杂。针对这一问题,提出了一种测量成本低、测试方法及操作较为简单的六自由度平台角位置精度测量方法,其主要包括六自由度平台的角位置测量精度以及角位置测量重复性。应用倾角仪对该平台横滚和俯仰两个方向的精度等进行了测量,使用光电自准直仪配合360多齿分度盘对该平台偏航方向的精度等进行了测量,测量结果表明:该测量方法能够准确快速测量出六自由度平台的角位置测量精度及角位置测量重复性,通过实验测出某Stewart六自由度平台横滚、俯仰及偏航方向的运动范围均为-10°~+10°,角位置测量精度分别达到0.012°、0.009°、0.018°,角位置测量重复性分别达到0.005°、0.007°、0.001°,能够很好地满足六自由度平台的技术指标。  相似文献   

16.
周凡桂  王晓光  高忠信  林麒 《航空学报》2019,40(12):123059-123059
绳牵引并联机器人(WDPR)为风洞试验提供了一种新型支撑方式,可用于多/六自由度风洞复杂动态试验。针对该支撑下飞行器模型的大范围运动,发展了一种基于双目视觉的模型位姿动态测量方法。首先,设计了一种编码合作标志点,合理布置于模型表面,通过图像处理消除绳对标志点成像干扰,进行标志点三维重构;然后,利用绝对定姿算法求解相对位姿初值,且给出了理论误差分析,并基于双目相机重投影误差构建李代数下的无约束最小二乘优化问题,采用L-M算法进行位姿优化;最后,采用该测量系统分别进行了静态和动态精度验证试验,以及大迎角俯仰振荡等3种单/多自由度典型运动轨迹测量。试验数据显示,静态角度和位移测量精度分别优于0.02°/0.02 mm;动态测量时角度精度可达到0.1°量级,位移平均误差为0.4 mm。研究结果表明:设计的双目视觉测量系统是有效可行的,可为后续风洞试验的实际应用提供支持。  相似文献   

17.
为提高航空发动机转子平衡精度及单元体装配独立性,对模拟转子平衡技术内在机理及模拟转子设计方法进行研究。采用数值模拟分析方法,基于低速硬支撑转子平衡测量及误差转位补偿原理,建立转子平衡过程的完整数学模型,分析平衡误差组成项,提取影响模拟转子平衡精度的参数。利用蒙特卡罗仿真及单因素试验方法、设计仿真算法,对误差项中的各参数进行仿真计算,得到各参数对平衡测量结果的影响规律及误差容限。结果表明:模拟转子可以再现由转子加工误差引入的附加不平衡量,其中模拟转子配合面端跳、柱跳、跨距、质心轴向位置、转动惯量、质量等参数均会影响附加不平衡量测量精度。各参数设计精度与测量精度正相关,但对测量精度影响权重不同。当配合面跳动小于0.005 mm,其余各参数精度控制在特定范围内时,测量误差近似为0,即模拟转子测量结果准确有效。  相似文献   

18.
针对大型上单翼飞机在飞行过程中机翼大挠度变形检测难题,提出了大倾角相机视场下机翼的非接触三维全场变形测量方案。根据上单翼飞机结构特点,将预先标定内参数和相机外参数的共轭相机组安装于飞机垂直尾翼上,采集飞行中的机翼变形图像。首先,提出了大倾角弱相关散斑匹配方法,解决了相机在大倾斜角度状态下采集到的机翼变形弱相关图像相关性差,难以相关匹配的问题。其次,由于测量相机安装于垂直尾翼,飞行测量过程中相机会受到气流扰动产生振动,本文提出了一种相机动态校正方法,通过在机背布置预拉伸刚性不动编码标志点,实时解算基准相机的绝对外参数,进而确定共轭相机的绝对外参数,实现所有测量相机外参数的动态校正。最后,开发了机翼变形全场测量软硬件系统,搭建了缩小比例机翼模型试验台并进行了仿真测量,对系统测量精度进行了比对分析。测量结果验证了本方案的有效性、可行性,对实机测量有一定的指导意义。  相似文献   

19.
针对资源勘探等高精度应用对航空重力仪测量精度和分辨率的更高要求,在前期研究基础之上,研发了新一代采用"捷联+平台"方案的新型航空重力仪。设计了采用石英挠性加速度计和光纤陀螺的捷联式重力仪,采用了新型温度控制方案,提高了重力仪的环境适应能力。设计了稳定平台,将捷联式重力仪保持在垂直方向,隔离载机的角运动干扰,减小了重力传感器的动态误差。飞行试验表明,该方案是有效的,将航空重力仪的精度和分辨率提升到优于1mGal/3km。  相似文献   

20.
X型热线探头的方向系数及其对湍流测量的影响   总被引:2,自引:0,他引:2  
热线的方向系数对湍流测量精度很大的影响。对于X型探头,热线的方向系语在校准曲线里,这给热线校准带来一定的困难。本文提出一种同时求出X探头的热线方向系数和校准曲线的逐步逼近法,并测得两根热线的方向系数为0.307和0.258,此值单针探头的方向系数不同,在三角形钝体尾流的测量中,本文还评估了方向系数对雷诺应力测量值的影响。实验表明,如果不考虑方向系数,最大误差可达10%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号