首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
大展弦比机翼的气动弹性问题探讨   总被引:1,自引:0,他引:1  
在考察国内外高空长航时飞机研究的基础上,对大展弦比机翼的气动弹性问题进行了探讨;分析了结构非线性对大展弦比机翼的气动弹性和飞行载荷的影响;提出了大展弦比机翼气动弹性问题的研究内容,并指出其技术难点。  相似文献   

2.
建立了具有任意截面形状的大展弦比复合材料翼的结构模型。研究了机翼的两种铺设方式:即周向均匀刚度配置(CUS)和周向反对称刚度配置(CAS)。对于复合箱梁情形,目前的结构建模方法正确性通过ANSYS有限单元软件得到了验证。为了研究具有NACA0012翼型的大展弦比复合材料机翼的气动弹性问题,利用线性ONERA空气动力模型来描述小攻角情形下的非定常空气动力载荷。最后,利用U—g法预示了机翼在各种复合层铺设角度下的颤振速度。  相似文献   

3.
侧向随动力作用下大展弦比柔性机翼的稳定性   总被引:1,自引:0,他引:1  
张健  向锦武 《航空学报》2010,31(11):2115-2123
 随动力能够诱发弹性结构发生颤振失稳。以侧向随动力和集中质量分别模拟发动机推力和外挂质量,考虑机翼垂直弯曲-扭转刚度比、集中质量大小、侧向随动力和集中质量的位置以及机翼后掠角和上反角的影响,研究了受侧向随动力作用的大展弦比柔性机翼的气动弹性稳定性。数值模拟所采用的大展弦比柔性机翼非线性气动弹性模型耦合了几何精确完全本征运动梁模型和ONERA动失速非定常气动力模型,该模型考虑了几何非线性、动失速和材料各向异性。模拟结果表明,侧向随动力对机翼颤振可以具有稳定作用,其具体表现依赖于若干变参数的影响,如:减小机翼垂直弯曲-扭转刚度比;发动机吊舱靠近翼根布置;使发动机推力作用点在法向上与机翼弹性轴靠近;单纯的集中质量避免布置在柔性机翼中部,且布置在机翼弹性轴之前或下方,这些设计或布置均有利于提高带发动机吊舱/有效载荷外挂的柔性机翼的气动弹性稳定性。  相似文献   

4.
桁架支撑机翼构型能够显著减轻结构重量,增大机翼展弦比,进而提高飞机升阻比,降低油耗,是一种很有潜力的未来运输机布局方案。目前国内尚无关于桁架支撑布局形式飞机的系统研究。为研究某大展弦比桁架支撑布局飞机的静气动弹性问题,本文采用基于面元法的静气动弹性分析法,依据估算刚度建立了其静气动弹性计算模型,与常规构型机翼进行了对比计算与分析。结果表明,采用桁架支撑布局形式的大展弦比机翼变形量较小,弹性变形对气动特性的影响量也较小,还能够有效降低内翼部分承受的力与力矩,有利于结构减重设计,从而为大展弦比桁架支撑机翼设计提供参考。  相似文献   

5.
复合材料大展弦比机翼动力学建模与颤振分析   总被引:5,自引:0,他引:5  
新一代航空结构广泛采用复合材料,对复合材料机翼的气动弹性工程化建模和分析是飞机设计的重要任务。应用气动弹性分析理论和方法,对复合材料大展弦比机翼进行了结构有限元建模、模型修正、固有振动特性计算、部件发散与颤振工程分析。本文使用MSC/NASTRAN软件,在复合材料大展弦比机翼的初步静力分析模型基础上,依据结构图纸、相关试验结果反复修改得到合理的机翼结构动力学有限元模型,固有振动计算中采用动力减缩方法消除局部模态并提高计算精度,采用亚音速偶极子格网法求解非定常气动力,并对单独机翼进行了发散和颤振计算分析。  相似文献   

6.
通过联立求解空气动力学基本方程、飞行动力学运动方程和弹性结构振动方程,在时间域内模拟和分析了大展弦比飞机纵向动力学稳定性问题。结合动网格技术,气动力计算采用基于欧拉方程的计算流体力学方法,结构变形和飞行姿态位置变化统一为模态表示方法,通过松耦合将飞行器姿态稳定性和结构变形稳定性施行了模拟。以某大展弦比机翼飞机为算例,研究了其刚体运动和机翼的弹性振动的相互影响。结果表明:对于具有大展弦比机翼的飞机,其机翼的低阶弹性模态易与飞机飞行中本身的刚体模态发生耦合,从而导致飞机机翼的气动弹性发散以及飞机本身刚体运动稳定性的改变。对于这类飞机,在其气动弹性和飞行稳定性的分析和设计中必须充分考虑到两种运动的相互影响。  相似文献   

7.
针对复合材料大展弦比机翼进行了静气动弹性特性的分析研究。计算应用MSC/NASTRAN软件,以某飞机复合材料大展弦比机翼的静力分析有限元模型为基础,对模型进行合理的修改,建立起静气动弹性分析的有限元模型,使用结构柔度法和亚音速偶极子格网法进行静气动弹性计算,重点分析了纵向气动导数以及相应的弹性修正系数随马赫数、速压变化的特点,总结出复合材料大展弦比机翼的一些气动弹性特性。  相似文献   

8.
基于主动刚度设计的理念,提出了以扭转力矩为目标函数,利用优化手段对机翼刚心线进行设计的方法,以期满足飞机初期阶段设计刚度的要求。以大展弦比机翼为算例,对刚心线优化方法进行了验证,得到匹配载荷的刚心线,并将优化结果与工程实际进行了比较,结果表明,该优化方法是一种科学合理的刚心线计算方法。刚心线位置的确定为后期机翼的刚度分析设计、甚至优化提供了支持。  相似文献   

9.
机翼的气动伺服弹性设计优化研究   总被引:2,自引:1,他引:1  
吴志刚  杨超 《航空学报》2006,27(4):570-573
以气动伺服弹性特性为约束和目标,对一个大展弦比机翼进行了结构/控制设计优化。该机翼具有双梁式结构和一个用于阵风响应减缓的主动控制面。在气动伺服弹性分析模型的基础上,建立了优化问题的数学描述。选取结构刚度和控制器参数为设计变量,以发散、无控和有控情况的颤振为约束条件,以结构重量和阵风响应组合性能为目标函数。采用遗传算法进行优化,得到的最优设计结果与原基准模型相比,机翼在满足气动弹性稳定的约束条件下,结构重量有所减轻,且阵风响应显著地减缓。  相似文献   

10.
大型飞机普遍采用的大展弦比机翼,其气动弹性问题显得尤为突出。通过求解基于三维结构网格的Euler/边界层耦合方程组,采用结构模态分析法,对HIRENASD机翼的静气动弹性进行了数值模拟。计算得到了机翼静弹变形前和变形后的压力分布以及不同攻角下翼尖变形值。计算结果和实验值对比分析,验证了Euler/边界层耦合方程组求解器对静气动弹性数值模拟的准确性,表明所发展的数值模拟方法可以用于大展弦比机翼静气动特性的分析研究。  相似文献   

11.
王超  张征宇  殷国富  孙岩  朱伟军 《航空学报》2014,35(5):1193-1199
高速风洞静弹性模型设计和制造是静弹性风洞试验的一个关键。为解决模型设计周期长、制造费用高等问题,提出了一种基于立体光固化快速成型面向高速风洞大展弦比机翼静弹性模型研制方法。基于机翼刚度分布相似参数,采用机翼钢梁骨架和树脂蒙皮组合结构,通过优化结构尺寸完成静弹性模型结构设计;使用机械加工和快速成型技术完成模型制造,并通过地面刚度试验对加工模型进行了刚度分布验证。风洞试验结果表明:基于立体光固化成型技术设计和制造的静弹性风洞试验模型工程实用、可行,与传统静弹性模型研制过程相比,具有研制周期短、成本低而且不存在因填充物带来附加刚度的显著优势。  相似文献   

12.
An aeroelastic two-level optimization methodology for preliminary design of wing struc- tures is presented, in which the parameters for structural layout and sizes are taken as design vari- ables in the first-level optimization, and robust constraints in conjunction with conventional aeroelastic constraints are considered in the second-level optimization. A low-order panel method is used for aerodynamic analysis in the first-level optimization, and a high-order panel method is employed in the second-level optimization. It is concluded that the design of the abovementioned structural parameters of a wing can be improved using the present method with high efficiency. An improvement is seen in aeroelastic performance of the wing obtained with the present method when compared to the initial wing. Since these optimized structures are obtained after consideration of aerodynamic and structural uncertainties, they are well suited to encounter these uncertainties when they occur in reality.  相似文献   

13.
吴斌 《飞机设计》2012,(2):15-22
在方案设计阶段,为了使机翼结构既满足强度设计要求,又满足刚度设计要求,本文提出了一种基于数学规划法的层次优化方法。首先利用准则法进行结构的满应力设计优化,在此基础上利用数学规划法进行结构的刚度设计(以颤振约束进行优化并进行舵面效率的校核)。文中以某型飞机机翼为例,在多墙、梁式两套方案的结构优化设计上进行了成功应用。  相似文献   

14.
带气弹稳定性约束的复合材料浆叶减振优化设计   总被引:1,自引:0,他引:1  
研究以降低直升机旋翼激振力为目标的复合材料桨叶结构动力学减振优化设计 ,分析了桨叶结构特性及桨尖后掠角等参数对N次 /转旋翼桨毂振动载荷的影响。在建立的桨叶二维结构特性有限元分析方程中 ,计入了桨叶剖面翘曲变形的影响 ,并利用哈密尔顿原理推导了旋翼桨叶的一维非线性运动微分方程。以桨毂交变载荷为目标函数 ,直接以复合材料桨叶典型剖面构造节点数据、铺层设计参数和桨尖后掠角等为设计变量 ,引入桨叶挥舞惯量、固有频率和气弹稳定性约束 ,进行旋翼的动力学优化设计 ,并结合 3片桨叶旋翼的设计进行了算例分析 ,优化结果使 3次/转的桨毂载荷降低了 2 4 .9%~ 33%。  相似文献   

15.
多控制面飞行器结构与配平鲁棒气动弹性优化方法   总被引:1,自引:1,他引:0  
基于遗传算法,提出了一种考虑多控制面飞行器结构参数和配平关系中的不确定性的鲁棒气动弹性优化方法,并在一个带有主动气动弹性机翼(AAW)的复杂小展弦比飞机的结构和控制面传动比的鲁棒设计中得到了应用.以非概率形式来衡量设计变量的不确定性变化,采用单目标函数形式,并引入一个反映目标函数相对变化的额外约束来描述鲁棒优化问题.在...  相似文献   

16.
韩伟  何景武 《飞机设计》2013,(5):6-11,17
在飞机结构优化设计中,针对循环利用有限元软件寻优耗时大、收敛比较慢的状况,本文采用了一种基于响应面多项式拟合方法对机翼结构进行优化。以某平直机翼为例,该方法从建立机翼结构的有限元模型出发,结合正交试验设计方法,经过对比,采用比较新颖的最大差值极小化法,建立机翼的二次响应面近似模型;在此基础上,以整个机翼结构质量最小化为目标,最大位移和最大应力为约束,把机翼划分为多个区域,选取各区域蒙皮厚度和全部肋腹板厚度为设计参数,建立数学优化模型,用ISIGHT集成MATLAB的方法,采用序列二次规划法进行优化。优化的结果表明,采用该方法对该平直机翼进行优化,在满足机翼刚度和强度的情况下,能有效降低机翼质量,并且避免了多次重复调用有限元软件进行计算,迭代次数仅为34次,优化效率明显提高。  相似文献   

17.
一种高效高精度的气动弹性结构优化方法   总被引:1,自引:0,他引:1       下载免费PDF全文
气动弹性结构优化技术主要包括约束求解和优化算法两个方面的内容。针对常用的基于低阶面元法的静气动弹性分析方法计算效率高但精度低的特点,建立了一种高效高精度的基于高阶面元法的静气动弹性分析方法。针对当前气动弹性结构优化技术使用单一优化算法导致搜索精度低、收敛速度慢等特点,将遗传算法和分形算法进行结合,发展了一种遗传/分形混合算法。针对气动弹性结构优化计算时间长、设备要求高等特点,引入了Kriging代理模型方法来加快优化速度,减少时间和设备的耗费。最后以某大展弦比客机机翼为算例,采用基于高阶面元法的静气动弹性分析方法求解约束响应样本,用Kriging代理模型方法对约束响应进行模型构建和预测,并将Kriging代理模型和遗传/分形混合优化算法进行结合,构建了一种高效高精度的静气动弹性结构优化方法。优化分析结果表明,Kriging代理模型在静气动弹性响应预测上具有很高的精度,平均误差均在5%以下,副翼效率预测的平均误差甚至低于1%;遗传/分形混合算法相比于单一的遗传算法具有更快的收敛速度和更强的全局寻优能力。  相似文献   

18.
李斌  董楠楠  冯志壮  牛文超 《航空学报》2016,37(10):3044-3053
在经典工程梁理论的基础上,结合张力薄膜的应力状态分析,提出充气机翼褶皱失稳的判据。计入表面薄膜褶皱引起的刚度退化效应,将机翼等效处理为一个变截面刚度的梁,建立了充气悬臂机翼的等效梁模型,并采用微分求积法进行充气机翼弯曲变形分析。计算结果与充气机翼的静力弯曲试验结果相吻合,验证了充气机翼弯曲变形分析方法的有效性。应用片条理论引入气动力模型,并与所建立的等效梁模型相耦合,建立充气机翼的静气动弹性耦合模型,并用迭代算法进行求解。考虑起皱和失稳两种判据,并计算获取了试验机翼的起皱动压和皱褶失稳动压形式,计算结果与风洞试验结果一致。根据所建立的充气机翼静气动弹性分析方法,可以预测充气机翼表面褶皱区的扩展和弯曲变形,进而绘制充气机翼的静气弹许用包线,为充气机翼的设计提供必要的安全边界参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号