首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
基于验证的数值模拟方法,针对带容腔结构的围带式静叶,研究了容腔泄漏流对其性能的影响以及容腔泄漏流与主流的相互干涉作用。在不同的来流附面层厚度下,探讨了叶栅二次流运动和角区分离发展情况,并通过总压损失系数和熵增系数对性能变化进行评判。结果表明:附面层厚度的增加使无容腔扩压叶栅总压损失系数和熵增损失系数增加。容腔泄漏流使叶片前缘出现容腔泄漏涡,并对通道涡的发展和集中脱落涡的大小产生影响;同时容腔泄漏流加强了叶栅通道内的三维流动效应,削弱了近端壁面流体的横向偏转;随着附面层增厚,带容腔的扩压叶栅的总压损失系数和熵增损失系数变化程度不明显。  相似文献   

2.
压力面小翼对涡轮叶栅不同间隙下流场影响的实验   总被引:3,自引:0,他引:3  
对某涡轮叶栅加装不同宽度的压力面小翼对叶栅间隙流场的影响进行了实验研究,详细测量了间隙高度为0.5%h,1%h,1.5%h时叶栅出口流场和叶片表面静压分布情况.通过实验结果分析得出:随着间隙高度的增加,间隙泄漏流动加剧,泄漏涡增强,叶栅总损失增加,同时使上通道涡的强度减弱;压力面小翼在间隙高度为0.5%h时对间隙泄漏流动的控制效果较好,宽度为0.4倍当地叶片厚度的压力面小翼能使叶栅总损失降低18%.间隙高度为1%h时,0.3倍当地叶片厚度的压力面小翼效果最佳,使叶栅总损失降低10.37%.间隙高度为1.5%h时,压力面小翼对间隙泄漏流动基本没有影响,但在一定程度上降低了叶栅总损失.   相似文献   

3.
叶栅二次流旋涡结构与损失分析   总被引:3,自引:2,他引:1  
采用三维粘性程序对某型动力涡轮的第一级进行了数值模拟, 模拟结果捕捉到了该涡轮级叶栅的内部流的流动细节, 展示了涡轮叶栅端壁和型面流动及叶栅通道内的三维流动结构.通过对叶栅中的二次流现象和流动损失机理的分析, 揭示了该涡轮级叶栅通道内二次流旋涡结构(马蹄涡、通道涡、壁角涡、尾迹涡、泄漏涡等)的演变过程, 以及旋涡结构对损失分布的影响.   相似文献   

4.
尾缘厚度对低压涡轮气动性能影响的数值模拟   总被引:1,自引:0,他引:1  
采用数值模拟的方法研究了尾缘厚度对Pak-B低压涡轮气动性能的影响.目的是通过增加尾缘厚度来控制边界层分离,降低损失,揭示增加尾缘厚度的流动控制机理.研究发现:适当增加尾缘厚度能减小低压涡轮损失,增大折转角.在雷诺数为25000,来流湍流度为1%时,适当增加尾缘厚度能使基于进口速度的能量损失系数降低10.4%,折转角增加1.73%.适当增加尾缘厚度和栅距同样可以使基于进口速度的能量损失系数减小,折转角增大.在雷诺数为25000,来流湍流度为1%时,尾缘厚度增加到4%s,栅距增加了2.2%,可以使基于进口速度的能量损失系数减小7.4%,折转角增加1.25%.通过增加尾缘厚度可以发展低稠度高负荷低压涡轮叶栅.   相似文献   

5.
具有叶尖小翼的涡轮叶栅间隙流动的实验研究   总被引:5,自引:5,他引:0       下载免费PDF全文
魏曼  钟兢军 《推进技术》2015,36(12):1825-1832
涡轮动叶叶顶间隙流动是引起动叶内部流动损失的重要因素之一,大约30%的流动损失是由间隙流动引起的。对高负荷涡轮叶栅在间隙高度1%叶高、0°冲角的条件下,加装不同宽度和安装位置的叶尖小翼进行了实验研究,结果表明,压力面小翼在一定程度上削弱了泄漏涡强度,0.3倍叶片当地厚度的压力面小翼效果最佳。吸力面小翼可使泄漏涡运动轨迹向相邻叶片的压力面侧偏移、泄漏涡强度减弱,间隙泄漏损失降低。随着吸力面叶尖小翼宽度的不断增加,叶尖小翼对泄漏流动的控制作用也不断增强,当宽度在1.2倍叶片当地厚度时,对泄漏流动控制效果最好,可使叶栅测量截面总损失与不加小翼的叶栅相比降低28%。组合小翼不如单纯的吸力面小翼效果好。  相似文献   

6.
钟兢军  魏曼 《推进技术》2016,37(5):892-899
为了控制和降低涡轮动叶由叶顶间隙所引起的泄漏损失,对加装不同宽度压力面小翼的涡轮叶栅间隙流场进行了实验研究,详细测量了±10°,±5°,0°冲角时涡轮叶栅出口流场和叶片表面静压分布情况。结果表明:随来流冲角由负到正,泄漏涡强度减弱,泄漏损失降低;通道涡强度增强,其引起的损失增大。压力面小翼在不同冲角下均对叶顶泄漏流动具有一定的控制作用,在设计冲角和较小的正冲角工况下PW0.3方案压力面小翼作用效果较好,分别使叶栅总损失降低10.38%和8.11%。在冲角变化范围更大时,PW0.4方案压力面小翼效果更好。  相似文献   

7.
带尾缘劈缝冷气喷射的涡轮叶栅性能实验及计算   总被引:3,自引:1,他引:2       下载免费PDF全文
通过平面叶栅实验和CFD数值计算方法,研究了叶片尾缘全劈缝冷气喷射下涡轮叶栅流场和气动性能。试验和计算发现,在冷气喷射条件下用不同损失系数描述涡轮叶栅性能,结论明显不同,用考虑冷气能量的能量损失系数评价气冷涡轮叶栅性能较为准确和客观。在较小的冷气流量下,劈缝冷气喷射使叶栅能量损失降低,尾缘劈缝冷气喷射可改善近尾迹区域的流动,减小尾迹亏损,降低尾迹掺混损失。尾缘劈缝冷气射流方向偏向叶片某型面,则尾迹损失峰值朝此型面偏移。  相似文献   

8.
涡轮叶片下缘板出气孔对内冷通道的流动和换热性能有较大影响。通过数值模拟方法研究下缘板出 气孔对尾缘和下缘板双路出气涡轮叶片尾缘内冷通道内的流动和换热特性,对比分析孔径、孔形和孔位置对尾 缘溢流孔流量系数、尾缘出流比、尾缘通道内总压系数和尾缘内冷腔壁面换热特性的影响。结果表明:下缘板 出气孔孔径对流量系数分布的影响显著,孔径增大,尾缘溢流孔流量系数下降,尾缘出流比减小,尾缘内冷通道 内压力损失降低,内冷腔平均换热系数增大;孔形对上游内冷通道内流动和换热几乎没有影响;孔位置变化对 内冷通道壁面整体的换热系数影响很小,对局部影响较大。  相似文献   

9.
姚玉  张靖周  何飞  郭文 《航空学报》2010,31(7):1312-1317
 运用RNG湍流模型对具有气膜冷却的涡轮叶栅通道内部的三维流场进行了数值模拟,分析在叶栅通道主流入口雷诺数Re=4×105~6×105和二次流吹风比M=0.5~3.0范围内,沿吸力面3个典型弦向位置处(分别对应叶栅通道喉部上游、喉部和喉部下游)开设收敛缝形孔对叶栅通道损失系数的影响。计算结果表明:冷气喷射仅对孔附近区域的压力系数产生影响;位于喉部上游位置收敛缝形孔的能量损失及总压损失系数最低,大部分工况中位于喉部下游位置收敛缝形孔的损失系数最高;与圆形孔相比,位于喉部上游位置收敛缝形孔既具有好的冷却效率又具有低的损失系数。  相似文献   

10.
为了进一步揭示吸力面叶尖小翼控制压气机叶栅间隙泄漏流动的作用机制,实验研究了三种不同宽度吸力面小翼在3%弦长间隙下对压气机叶栅气动性能的影响,并建立了带吸力面小翼的压气机叶栅旋涡结构模型。研究结果表明,吸力面小翼使得泄漏流在翼顶通道内发生掺混,延缓了泄漏涡的形成并降低了泄漏涡强度,三种宽度吸力面小翼分别使叶栅损失降低6.9%,7.7%和8.2%。吸力面小翼对叶栅损失值的降低量并不与其自身宽度增加量成线性关系。较大宽度的吸力面小翼会导致近端壁区气流欠偏转程度增加及泄漏流掺混损失等附加损失增大。  相似文献   

11.
具有不同翼刀的压气机叶栅二次流结构分析   总被引:3,自引:1,他引:2  
给出了具有端壁翼刀、吸力面翼刀和组合翼刀的可控扩散叶型(CDA)压气机叶栅的二次流结构简图.端壁翼刀和吸力面翼刀分别通过阻断端壁横向流动和展向流动来对栅内二次流进行控制,不同程度上可使叶栅总损失得到降低;组合翼刀叶栅兼顾了端壁翼刀、吸力面翼刀叶栅中二次流的特点;最佳组合翼刀并不是最佳端壁翼刀和最佳吸力面翼刀的简单组合,它需要一个更详细的优化过程.不同翼刀在不同程度上改善栅内流动状况的同时,也伴随着端壁翼刀涡、吸力面翼刀涡和类通道涡的形成和发展,这使栅内旋涡结构较常规叶栅更为复杂.   相似文献   

12.
非轴对称端壁造型对叶片端壁气热性能影响的研究   总被引:3,自引:2,他引:1       下载免费PDF全文
为了研究非轴对称端壁造型对典型燃气透平叶片端壁气动热力性能的影响,基于双控制型线非轴对称端壁造型方法,建立了间隙射流和主流掺混作用下非轴对称端壁气动热力性能的数值研究模型。在数值验证的基础上,研究了4种不同非轴对称端壁造型几何结构对叶栅端壁流动特性和气膜冷却性能的影响规律。结果表明,针对本文研究的大转折角透平叶片,在叶栅通道前部进行非轴对称端壁造型,会增强端壁的横向二次流,导致叶栅总压损失系数略有增大,会降低端壁的气膜有效度。而在叶栅通道后部进行非轴对称端壁造型,可以有效削弱端壁的横向二次流,减弱通道涡,从而降低叶栅的总压损失系数,同时,能够提升端壁横向平均气膜有效度高达22%,有利于提高端壁的气动热力性能。  相似文献   

13.
对一压气机平面叶栅进行全三维数值模拟,分别对两种不同叶尖间隙情况下,移动端壁对叶栅性能及泄漏流流动结构的影响进行分析。详细对比了不同条件下,叶栅损失,泄漏涡传播轨迹及影响范围,泄漏流量等参数的变化,同时通过三维流线结构的对比,对泄漏流在间隙中的流动特点及其在通道中与主流的相互作用进行分析。结果表明:移动端壁加入使泄漏流量增加,泄漏涡传播轨迹向远离吸力面,靠近端壁的方向偏移,削弱通道流与泄漏流之间的剪切作用,改变通道中的各个二次流动结构所占比例。间隙较小时,移动端壁的影响主要集中在端壁附近,而间隙较大时,移动端壁能够抑制叶顶分离涡,从而影响整个间隙中泄漏流的速度分布,进一步削弱通道流与泄漏流动之间的剪切作用。   相似文献   

14.
用端壁造型减小涡轮叶栅二次流损失的数值研究   总被引:14,自引:9,他引:5       下载免费PDF全文
分别对常规叶栅、下端壁上凸和下端壁下凹叶栅的流场进行了详尽的数值模拟,通过将下端壁上凸和下端壁下凹叶栅中的通道涡的发生、发展过程与常规叶栅进行对比分析,对非轴对称端壁造型减小涡轮叶栅二次流损失的机理进行了初步的探讨。结果表明:下端壁上凸叶栅出口处的总压损失比常规叶栅下降了4.2%,下端壁下凹叶栅出口处的总压损失比常规叶栅增加了11.9%;在下端壁上凸叶栅中,下通道涡的形成比常规叶栅和下端壁下凹叶栅滞后,失去了充分发展的"机会"。这是非轴对称端壁造型能够减小涡轮叶栅二次流损失的根本原因。  相似文献   

15.
压气机叶栅内不同高度端壁翼刀的实验   总被引:1,自引:0,他引:1  
通过采用五孔探针在低速平面风洞上测量压气机叶栅流场的方法,研究了不同高度和周向位置的端壁翼刀对叶栅能量损失及二次流速度矢量的影响.结果表明,使叶栅总损失降低的最佳周向安装位置是距离吸力面70%相对节距处,最佳翼刀高度为5 mm;存在使叶栅总损失降低的极限翼刀高度.当翼刀高度增加时,翼刀涡更加清晰.安装翼刀可以改变叶栅端壁损失的分布,进而控制吸力面/端壁角区的流动,改善叶栅的气动性能.   相似文献   

16.
高压级涡轮非轴对称端壁造型数值研究   总被引:1,自引:0,他引:1  
非轴对称端壁造型在叶轮机械的设计中得到了越来越多的重视.本文以某高压涡轮为研究对象,通过对端壁面上凸、端壁面下凹和轴对称端壁流场的数值模拟,分析了非轴对称端壁造型对涡轮性能的影响,探讨了非轴对称端壁造型降低流场二次流流动损失的机理.结果表明:采用非轴对称上凸端壁可提高涡轮气动效率0.57%,而采用非轴对称下凹端壁则导致效率下降0.56%,合理使用非轴对称端壁造型技术可有效降低二次流流动损失并提高涡轮气动性能.  相似文献   

17.
叶顶抽吸对叶栅间隙泄漏流动的控制研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张博涛  刘波  赵航 《推进技术》2020,41(8):1701-1709
为了控制压气机叶尖间隙泄漏流动,减少叶尖泄漏流和泄漏涡对压气机内部流场带来的不利影响,数值模拟研究了在压气机叶栅叶顶位置沿叶片中弧线开槽抽吸对叶尖泄漏流的控制效果,并与端壁流向开槽抽吸方案进行了对比分析。研究结果表明:叶顶抽吸和端壁抽吸直接通过影响叶尖泄漏流的结构形态,减弱间隙泄漏流强度和影响范围,从而提升压气机/叶栅性能。叶顶中游抽吸方案Slot TB对于泄漏流与泄漏涡的控制效果优于叶顶上游抽吸方案Slot TA;而机匣端壁上游抽吸方案Slot CA相较于中游抽吸方案Slot CB对叶顶流场改善效果更佳。叶顶抽吸和端壁抽吸在抽吸量为0.6%时分别可以使总压损失系数下降约3.3%和7.2%。  相似文献   

18.
利用端区射流调节涡轮流量的数值研究   总被引:1,自引:1,他引:0  
采用三维数值模拟方法对在导叶端区射入第二股气流的涡轮流场进行计算,分析了各喷气参数(如喷气位置、角度、流量、马赫数以及总温总压等)对涡轮流量的影响规律.结果表明:涡轮流量对喷气位置相当敏感,精确的喉道位置有利于流量调节;与主流成钝角喷气对涡轮流量的调节效果较好,且喷气流量与涡轮流量的变化呈线性关系;喷气马赫数在亚声速范...  相似文献   

19.
对CDA常规直叶栅和三种具有不同高度端壁翼刀压气机叶栅内三维粘性流场进行了数值模拟。计算结果表明,翼刀偏向吸力面一侧上方有反向翼刀涡产生;随着翼刀高度增加,对横向流动的阻断作用增强的同时,翼刀周围损失有所增加;1/3附面层厚度为加装翼刀的最佳翼刀高度,可使叶栅损失降低9%。实验与计算结果吻合较好。   相似文献   

20.
非轴对称端壁下高负荷压气机叶栅二次流动分析   总被引:3,自引:2,他引:1  
探讨了高负荷压气机叶栅中应用非轴对称端壁的有效性.首先利用NUMECA/Design3D优化软件包来完成了对端壁的优化,然后推导并建立了高负荷压气机叶栅出口含全部掺混损失的二次流损失的计算方法,最后在设计攻角和非设计攻角下对轴对称端壁和非轴对称端壁结构的高负荷压气机叶栅内部及出口流场进行了详细的分析.分析结果表明:在设计攻角和非设计攻角下采用非轴对称端壁均能改变端壁附近载荷分布、降低叶片通道的二次流动损失;在设计攻角下使叶栅周向质量平均总压损失减少约为9.4%,在非设计攻角(±3°)下分别减损7.7%和11.8%;当非轴对称端壁幅值为4%叶高时,二次流动损失最小.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号