首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
从品质因数的原始定义出发,分别计算出简单RLC串、并联电路的品质因数,得到两个结论,并将其推广,提出了两种简单的计算品质因数的方法,最后通过求解一个实际的LC并联谐振电路的品质因数得到验证。  相似文献   

2.
双端固定石英音叉谐振梁是振梁加速度计中的重要力敏传感器,驱动电路与其相配合,实现谐振梁在谐振频率点处的信号输出,进而测量加速度变化.研究中根据谐振梁等效电阻较大的特点,驱动电路采用了能够提供更高增益的双门振荡器方案,并对电路中CMOS反相器用作模拟放大器的用法进行了仿真,同时也分析了电路的自激振荡过程,并指出合适的反馈...  相似文献   

3.
在分析压电马达运行原理和等效电路的基础上,设计了一种基于LC谐振原理的压电马达驱动电路。采用TMS320F28035 DSP为电路的控制核心,利用全桥逆变和LC谐振产生驱动信号,并通过Multisim软件对驱动电路进行仿真分析。实验结果证明,该驱动电路能够满足驱动压电马达的要求,提高光纤对轴系统的定位精度,同时实现系统的小型化设计。  相似文献   

4.
目前国外的振动标准在程序上着重谐振频率检查,进行前后对比。并规定当谐振频率发生某种变化时在专用技术文件中应采取措施。为了摸透它的目的,作者进行了验证并在数量上提供了谐振频率变化与疲劳损伤的关系以及提出了谐振频率检查的用途。  相似文献   

5.
本文描述了一种新型谐振式加速度计,该加速度计中的横梁和振动摆耦合为一体,且横梁受内置式压敏电阻激励后,传感摆的振动变化,加速度使振动摆偏移原始位置。造成传感器内部件特征应力变化,使谐振频率发生改变,本文着重研究谐振梁振动特征,在高振幅非线性区域,理论与实际地处理显示结果,该加速度计电-热干扰可以相互消除谐振传感原理保证了该传感器的准数字信号输出,高灵敏度以及完整的力学试验,先进的自动安全系统和电子伺服系统要求传感器结构可靠。传感器自测试性能,在运行中内部元件无需结构调整。自测试理论也可用于非谐振式结构的传感器。  相似文献   

6.
硅谐振压力微传感器开环测试中的信号处理技术   总被引:1,自引:0,他引:1  
介绍了自行设计的专用开环测试系统。该系统为一个自动测试系统,可测出谐振梁的幅频和相频特性,而且能成功地测出从拾振电阻获得的若干微伏的微弱信号。开环测试中最重要的问题是所谓的同频干扰。发现通过激励电阻与拾振电阻间的分布电容耦合的激励信号是同频干扰的最终来源。用对称激励技术成功地解决了这一问题。  相似文献   

7.
唯一稳态消谐法是近年出现的消除非线性系统谐振新的分析方法。该方法的基本思想是如果非线性系统存在一个非谐振的正常解,并且该系统具有唯一的稳态,则此时对应的条件就是系统不发生谐振的条件。将这一方法应用在中性点接地电力系统铁磁谐振的分析中,以向量比较原理为工具,得到相应的消谐条件。结果表明,消除谐振的条件可以用一个常数矩阵的HURWITZ条件来决定,并用数值模拟进行验证,表明结果是正确的,同时也说明唯一稳态消谐法的有效性。  相似文献   

8.
温度特性分析是均衡器设计与工程应用中不可忽视的重要环节,由于温度的变化,会使均衡器各部分材料的物理特性和电特性发生变化,从而使谐振频率发生偏移,如果偏移过大,会严重影响均衡效果,甚至会加剧原始信号的波动.本文通过把微波幅度均衡器的同轴谐振腔,等效为电容负载同轴线空腔谐振器,计算谐振频率与腔长和负载电容的关系.在单腔的情况下,分析了在低温和高温时,材料物理特性的变化引起的谐振频率的偏移情况,并且根据具体实验验证了高温70℃和低温-55℃时谐振频率的变化情况.  相似文献   

9.
针对发动机谐振可能与箭体弹性振动之间发生耦合共振,从而引起姿态控制系统不稳定的问题,首先将发动机谐振特性简化为一个二阶环节,建立了包含发动机谐振方程的火箭姿态动力学模型;然后分析了发动机谐振对箭体模态极点频率和阻尼比的影响,并从理论上分析了出现负阻尼比时发动机和箭体模态间的耦合共振机理,在此基础上计算了导致姿态控制系统...  相似文献   

10.
一、前言 在飞机和一般工业中,多泵并联供压液压系统是很常见的。研究动态仿真,对提高它们的动态品质是至关重要的。 泵源的脉动流量输入到液压系统中,在遇到负载阻抗后形成压力脉动。在泵源和负载的阻抗匹配后,可产生谐振现象,形成强烈的压力流量脉动,并引起液压系统的机械振动,严重者将造成元、部件的破坏。研究谐振问题的最方便的方法是频率法。  相似文献   

11.
For a given output voltage and power, the peak resonant capacitor voltage and peak inductor and switch currents of the series resonant converter depend strongly on the choice of transformer turns ratio and of tank inductance and capacitance. In this paper the particular component values which result in the smallest component stresses are determined, and a simple design strategy is developed. The procedure is illustrated for an off-line 200 W, 5 V application, and it is shown that an incorrect choice of component values can result in significantly higher component stresses than are necessary.  相似文献   

12.
A hybrid resonant inverter system is presented that satisfies the steady-state operating requirements of a power source for the proposed International Space Station mobile servicing system. The steady-state behavior of the inverter was analyzed and a method is described for optimizing the design of the resonant network. The performance characteristics such as the total harmonic distortion of the output voltage, RMS output voltage, and the inverter efficiency are presented. The hybrid resonant inverter system maintains an excellent efficiency over varying output-load demand  相似文献   

13.
A number of high-frequency link power converter schemes suitable for interconnecting a photovoltaic (PV) array to the utility line using resonant inverters are presented. Use of high-frequency resonant inverters (HFRI) results in reduced size, weight and cost. Scheme 1 uses the HFRI-cycloconverter, scheme 2 uses the HFRI-rectifier pulsewidth-modulated voltage source inverter, scheme 3 uses the HFRI-rectifier line commutated inverter working with a fixed maximum possible inverting fringe angle, and scheme 4 uses the HFRI-rectifier line-connected inverter (with line current modulation). These schemes are compared. Based on the comparison, scheme 3 was selected for an initial study. To overcome various problems associated with scheme 3, the line current is modulated sinusoidally in scheme 4. In this scheme, the HFRI is controlled appropriately to obtain a rectified sine wave of 120 Hz in the DC link and the function of the line-connected inverter is to unfold this waveform on alternate half cycles to obtain a sinusoidal line current with the line voltage. Methods of commutation of the line connected inverter are explained. Experimental results obtained with scheme 4 are presented  相似文献   

14.
The series resonant converter is analyzed in steady state, and for constant switching frequency the output current and voltage characteristics are found to be ellipses. The converter operating point can then be easily obtained by superimposing a load line on these elliptical characteristics. Peak resonant capacitor voltage and inductor current are also plotted in the output plane and are dependent to first order only on output current. When peak voltage and current are plotted in this manner, the dependence of component stresses on operating point is clearly revealed. The output characteristics are modified to include the effect of transistor and diode voltage drops, and experimental verification is presented.  相似文献   

15.
Because of their tolerance of transformer nonidealities, resonant converters are considered to be well-suited to high-voltage applications. The series and parallel resonant topologies, as well as a newly discovered hybrid resonant topology are compared for high-voltage applications. Design criteria which incorporate transformer nonidealities are developed and used in the construction of high voltage prototypes for each topology. It is found that the parallel topology leads to the lowest peak switch current and the most ideal behavior  相似文献   

16.
提出了一种根据永磁同步电机(PMSM)转速来调节交轴电压的最大转矩法。算法对电压极限矢量圆与电流极限矢量圆定量分析,找到电机稳定运行时的最大转矩点,通过在电压极限矢量圆补偿定子电阻压降修正最大转矩点。通过直接给定交轴电压的方式,充分利用修正最大转矩点的电磁转矩,提高电机的负载能力和抗干扰能力。仿真验证了该算法的有效性和可行性。对于最大转矩点的定量分析,使此模型具有良好的可移植性。  相似文献   

17.
An analysis is done to determine the maximum power transfer conditions for full-wave rectifier circuits. Potential applications noted are implanted medical instruments, inductive power transfer to weapons, power transfer using space reflectors, and power generation in space. Three types of series impedances are considered: resistive/inductive (RL), resistive/capacitive (RC), and resistive/inductive/capacitive (RLC). The optimum ratio of ac-to-dc voltage output is determined for each type. For the case that involves all three impedance types, the optimum turning condition is also determined. The differential equations describing the circuits are solved in nondimensional form. The solutions involve partial differential equations, closed-form relationships, and simultaneous equations that are solved by numerical methods. The optimum ratio of peak ac-to-dc voltage ranges from 2.0 to 2.8, depending upon the circuit. The optimum turning differs significantly from the usual resonant conditions, especially for low Q.  相似文献   

18.
When an LLC-type parallel resonant converter (LLC-PRC) operates above resonant frequency, the switching transistors can be turned off at zero voltage. Further study reveals that the LLC-PRC possesses the advantage of lower converter voltage gain as compared with the conventional PRC. Based on the analytic results derived, a complete set of design curves from which a systematic design procedure is developed is obtained. Experimental results from a 150-W, 150-kHz, multioutput LLC-type PRC power supply are presented  相似文献   

19.
Power losses in series-resonant converters (SRCs) operated above resonance are examined for the purpose of developing design guidelines leading to SRC designs with the highest possible operating efficiencies. Loss expressions are formulated and analyzed as functions of normalized voltage conversion ratio M and normalized output current J for the controlled transistor switches, antiparallel diodes, bridge diodes, and resonant capacitor. Overall losses range from a low of nearly 9% to a maximum of about 17%. Operating efficiencies corresponding to these losses range from a high of 92% to a low of 85%. Operation at the maximum efficiency of 92% occurs at values of M close to unity and is not highly dependent on J. However, in a practical closed-loop regulated SRC, operation with M too close to unity could provide an insufficient design margin, given component tolerances or other variations  相似文献   

20.
Because of their reduced switching losses, allowing a higher operating frequency, dc-to-dc resonant converters have been used extensively in the design of smaller size and lighter weight power supplies. The steady state and dynamic behavior of both the conventional series and parallel resonant converters have been thoroughly analyzed and small-signal models around given nominal operating points have been obtained. These models have been used in the past to design controllers that attempted to keep the output voltage constant in the presence of input perturbations. However, these controllers did not take into account either load or components variations, and this could lead to instability in the face of component or load changes. Moreover, prediction of the frequency range for stability was done a posteriori, either experimentally or by a trial and error approach In this paper we use μ-synthesis to design a robust controller for a series resonant converter (SRC). In addition to robust stability the design objectives include rejection of disturbances at the converter input while keeping the control input and the settling time within values compatible with a practical implementation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号