首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
基于亚像素的圆孔几何参数立体视觉高精度测量   总被引:1,自引:0,他引:1  
针对工业现场当中圆孔尺寸测量的问题,提出了基于亚像素边界提取和圆拟合的圆孔几何参数双目立体视觉高精度非接触测量方法.该方法包含了经过Canny算法的一次边界定位后的基于灰度矩的亚像素边界二次高精度提取算法,以及采用基于空间三维圆最优拟合求取空间圆的几何中心和半径等参数的算法.实验证明,该方法对于工件上圆孔的测量不仅提高了测量精度,并且减小了空间圆透视投影畸变引起的测量误差,从而满足了现场实验环境要求,保证了圆孔几何参数测量的高精度和高速度.  相似文献   

2.
针对表面裂纹边缘轮廓的不规则特性,提出了一种分段宽度评定方法.利用计算机数字图像处理的方法,在获得表面图像后,对该图像沿纵向进行分段,分别对每段的裂纹宽度用Ferret算法进行评定.为了比较不同的分段方法的优劣,提出有用信息利用率的概念,从几种分段方法中选出一种最优的方法进行分段评定,最后得出该裂纹宽度的定量评定.经过实例验证,用此方法可以定量评定裂纹的宽度,评定的结果可以为机械结构表面检测提供有效依据,该方法也可应用于一般不规则图形几何尺寸的定量评定.   相似文献   

3.
基于机器视觉的玻璃瓶检测系统   总被引:6,自引:0,他引:6       下载免费PDF全文
随着数字图像处理技术的发展,图像检测的应用逐渐成为许多工程应用中的关键技术。文中阐述了在玻璃瓶检测中,利用数字图像处理技术设计的检测系统的结构、实现原理和实现方法;通过像素坐标平均法进行瓶口定位,利用环形扫描法对有瓶口裂缝、瓶口缺口、瓶颈裂缝等缺陷的玻璃瓶进行检测,实现了准确、快速、无接触检测的功能。  相似文献   

4.
为自主完成空间服务任务,需要满足各种功能需求、突破多种关键技术。针对在轨服务中具有圆特征的非合作目标空间圆(星箭对接环、发动机喷管等),首先分析了非合作目标空间圆检测技术在在轨服务系统中的主要应用;然后提出了一种非合作目标空间圆的检测方法,通过Canny算子检测边缘,并用Freeman链码法对边缘进行提取分类,再利用RED算法进行非合作目标空间圆检测;最后给出仿真结果,在保证检测精度的前提下,较传统的RED算法明显降低了算法的耗时量。  相似文献   

5.
基于数字图像处理的布氏硬度压痕直径测量方法   总被引:1,自引:0,他引:1  
在分析布氏硬度试验压痕图像的基础上,提出了基于数字图像处理的布氏硬度压痕直径测量方法.利用CCD相机获取压痕图像,通过图像分割、目标区域处理、压痕圆拟合等步骤完成图像处理,由此实现对压痕尺寸的自动精确测量.  相似文献   

6.
采用有限元方法对GH536带孔平板试样的蠕变响应进行了数值模拟,以圆孔半径为尺寸参数,研究了不同圆孔半径试样的蠕变应力、蠕变应变分布及其随时间的变化。计算结果表明:圆孔半径对应力分布影响显著,圆孔半径越小,最大等效应力越大,最大等效应力随时间的松弛越明显,蠕变引起的应力重新分布越明显;对含局部应力集中部位结构进行持久强度储备和寿命分析时,必须考虑局部应力分布特性的影响。  相似文献   

7.
某型发动机风扇一级盘由于凸台倒圆处存在划伤、裂纹等故障,一般对凸台倒圆处进行拉削,但当拉削后的凸台倒圆处再出现径向裂纹时,使用常规超声纵波、横波反射方法无法进行检测,只能使用超声衍射时差法(Time of Flight Diffraction,TOFD)检测技术进行检测。本文介绍了TOFD检测原理,通过合理选择TOFD探头频率、楔块材料、晶片尺寸、倾斜角度,制作专用探头,确定仪器参数,完成了风扇一级盘凸台倒圆处径向疲劳裂纹的检测任务。  相似文献   

8.
介绍了一种运煤列车卸煤状况检测新方法,论述了检测系统的基本组成及特点,提出用 数字图像采集及数字图像处理方法检测运煤列车残煤量的新方法,对实际应用作了相应介绍。  相似文献   

9.
讨论了用带有数字图像处理和计算系统的麦克尔逊干涉涉显微镜测量像人工关节这样的球形表面粗糙度的方法,用数字图像处理方法处理等倾干涉和等厚干扰这两种干扰图像,并萃取出反映被测球面微观不平度信息的干涉带的边界线。本文推导了用最小二乘拟合原理计算标准最小二乘圆和圆弧的算法以及用获取的被测表面的微面不平度偏差计算表面粗糙度参数的方法。  相似文献   

10.
在线实时工件测长系统开发   总被引:5,自引:0,他引:5  
在线实时工件测长系统是将数字图像处理技术与在线图像检测技术应用于工业生产现场的一个典型实例,系统中采用光学摄像机采集工件图像信息,应用图像增强、边缘检测、图像识别等数字图像处理技术对所采集到的图像信息进行处理识别,实现了在远距离条件下以非接触方式对生产线上的工件进行实时长度测量,并实现了对测量结果的显示、记录及传送。大量实验表明,在线实时工件测长系统能够准确地进行在线工件全天候测长,保证了检测的客观性和真实性。此外,系统还具有耐高温耐污染的特点,适合于工业现场的环境。  相似文献   

11.
该方法是在模板操作的基础上,根据图像特征确定一个最佳模板系数值,可以有效减少噪声,甚至去除不必要的背景图像,以突出目标轮廓达到目标提取的目的.实验结果表明:该方法很好地实现了以上效果,目标提取准确,为目标定位检测、图像识别等后续处理带来了极大的方便.  相似文献   

12.
边缘特征常被视作无人机视觉系统中的重要信息(比如在视觉导航时需用边缘特征识别障碍物),在实践中会遇到边缘图像数据量大的情况。针对边缘图像高效压缩问题,提出了边缘图像自适应编码方法。首先以边缘打包法的压缩比和边缘点所占比例为特征,建立Logistic回归模型,然后利用图像数据库对该模型进行离线训练获取模型参数,最后利用Logistic回归模型建立分类器,自适应地在边缘打包法和链码编码法中选择压缩比最高的方法对边缘图像进行压缩。对VOC2012图像数据库的测试结果表明,与常用压缩方法相比,提出的算法能提高压缩比5%左右,有效减少了数据量。  相似文献   

13.
为了解决条烟封箱机装箱过程中的缺条检测问题,本文在研究红外图像处理技术的基础上,提出了一种基于红外成像的烟垛缺条检测方法,该方法通过对实时拍摄的烟垛端部图像进行形态学处理、边缘提取,计算边缘图像构成的轮廓矩,并通过对比该图像和模板的轮廓矩信息判断烟垛是否缺条。并根据实际应用,设计了基于红外成像的条烟封箱自动检测系统。实际检测表明,所研制的红外成像自动检测系统能很好的解决香烟封箱过程中的缺条检测问题,具有很好的应用价值。  相似文献   

14.
介绍了一种自适应柔性机翼后缘变形控制优化设计方法,该方法采用了由单个驱动器驱动的单块式分布柔性结构。该方法的关键在于设计一种合适的柔性后缘结构拓扑形式,使该自适应柔性机翼后缘能够达到精确的变形。阐明了柔性结构拓扑优化设计的数学模型,针对自适应柔性机翼后缘概念设计提出了基于参数化分析的拓扑优化设计方案,并进行了工程化圆整和尺寸优化。最终,通过非线性有限元分析和功能测试,验证了本文提出的柔性后缘优化设计方法的合理性。  相似文献   

15.
基于提升小波变换和形态学的基本理论,提出了一种提升小波和形态学相结合的图像边缘检测算法,算法充分利用了提升小波变换相对于传统小波变换快速而有效的完成小波分解和重构的算法优势。形态学运算在图像处理中具有独特的优势,利用其对图像膨胀和腐蚀的差运算来获取图像的边缘,取得了很好的效果。实验结果表明,算法边缘定位准确,抗噪能力强,检测出的图像边缘连续、平滑,是一种有效的边缘检测方法。  相似文献   

16.
通过双目视觉平台捕获图像反馈PC机,采用基于支持向量机(SVM)的机器学习方法对目标进行分类。判定型号并为每个型号加载图像处理检测方案及参数矩阵,实现电连接器针脚的柔性定位预处理,之后执行针顶轮廓的精确拟合算法,结合插针排列模版实现其三项检测工作。最后,通过实例验证与重复精度实验,结果表明本文方法具备面向多型号的柔性检测能力,并且稳定性,精度,效率满足低频连接器的检验要求。  相似文献   

17.
提出一种先利用图像边缘信息缩小检索范围。再利用图像颜色信息进行目标定位的图像检索算法。首先。提取图像边缘信息。利用图像位错率进行边缘信息比较,位错率越小图像边缘信息越接近;然后,利用主色调确定图像的目标块,进行目标子块间的比较。算法忽略图像中不重要的背景因素,有效利用重要的目标因素。从而提高了检索效率。仿真实验证明该算法比单一使用边缘检测、颜色目标定位具有更好的检索性能。  相似文献   

18.
很多低成本设备输出的深度图存在明显的边缘不匹配、深度信息缺失导致孔洞等问题,而现有的优化算法实时性差,提出的基于导向滤波的深度图优化方法可以兼顾实时性和视觉效果。首先,采用基于单尺度的Retinex方法对配准的灰度图像进行增强处理,消除光照阴影等导致的虚假边缘,增强真实边缘。然后,将处理后的灰度图像作为引导基础,通过具有边缘保持能力的导向滤波器优化深度图像,实现边缘保持的同时填充孔洞。最后,通过标准数据库和实际深度图进行实验验证。结果表明,处理后的深度图能够很好地反映基本形态,兼具实时运算竞争力。  相似文献   

19.
结合金属图象的特点,利用传统阚值分割技术和基于最大熵原则的图象分割技术对金属图象分割进行了分析;并根据金属图象分析要求,提出了先二值化金属图象再进行边缘提取的方法.对比实验结果表明,基于最大熵原则的图象分割技术可以获得较好的分割效果,所提出的方法能够获得连续闭合的晶粒边缘,为下一步的金属图象分析提供了可靠的依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号