首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Lockheed Martin Missiles & Space (LMMS), Ultralife Batteries, Inc. (UBI), Eagle Picher Technologies, LLC (EPT), Sandia National Laboratories (SNL) and Rentech, Inc. (RTI) are developing lithium ion solid polymer electrolyte (Li-ion SPE) batteries. Under a new Advanced Technology Program (ATP), this team will develop new high-energy density cells and batteries for space and portable electronics applications. These new batteries will utilize new high-energy density anode and cathode active materials developed by SNL and RTI. UBI will incorporate these new materials into an optimized Li-ion SPE electrode laminate. EPT will develop batteries for aerospace applications based on this electrode laminate technology while LMMS will design the battery charge management controller and provide system expertise  相似文献   

2.
Improvements in performance and reliability continue to be made in the traditional primary and secondary systems such as C-Zn, alkaline MnO 2, Zn-air, Li-I, and sealed Ni-Cd and lead acid. In addition, two new secondary systems, Ni-metal hydride and lithium ion, have recently been introduced. They are growing rapidly in response to environmental concerns and the need for more energy density by devices. Two new rechargeable systems, Zn-air and lithium polymer electrolyte are nearing commercial production. One manufacturer has just introduced a rechargeable version of the alkaline MnO2 system for consumer use. Lithium primary systems, such as Li-MnO2, Li-FeS2 and CFx are gaining substantial market share, amounting to about $500 million in 1992. Li-silver vanadium primary cells have been developed to supply the higher currents needed by implantable medical devices such as defibrillators  相似文献   

3.
The Hy-StorTM Battery is a rechargeable battery being developed for electric vehicles and other large battery applications. The battery combines the high energy storage capability of metal hydride alloys with the high cycle life and discharge rate capabilities of nickel-hydrogen cells. It is a hybrid battery concept that offers potential performance, economic and safety advantages over other large battery technologies. Very recent developments indicate that much smaller batteries can also be produced to meet the needs of the portable computer and other portable electronic device markets. Initial tests demonstrated the ability of a metal hydride storage system to achieve high cycle life when absorbing hydrogen that was saturated with battery electrolyte solution and then passed through a purifier. Based on positive test results, a patent for the Hy-Stor battery was applied for and granted  相似文献   

4.
The successful development and demonstration of the Al-AgO primary battery system dramatically demonstrated the viability of electric power plants for torpedo propulsion. Present efforts are focused on the development and demonstration of very low cost, quiet, high performance, safe, environmentally compatible, rechargeable batteries for heavyweight and lightweight torpedoes and tactical-sized UUVs. Electric power plants consisting of a rechargeable battery and a high reliability motor must be affordable to own and operate and enable turn-around without teardown for today's Fleet assets  相似文献   

5.
NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, lithium-ion batteries have been identified as the battery chemistry of choice for a number of future applications, including Mars rovers and landers. The Mars 2001 Lander (Mars Surveyor Program MSP 01) will be one of the first missions which will utilize lithium-ion technology. This application will require two lithium-ion batteries, each being 28 V (eight cells), 25 Ah and 8 kg. In addition to the requirement of being able to supply at least 200 cycles and 90 days of operation on the surface of Mars, the battery must be capable of operation (both charge and discharge) at temperatures as low as -20°C. To assess the viability of lithium-ion cells for these applications, a number of performance characterization tests have been performed, including: assessing the room temperature cycle life, low temperature cycle life (-20°C), rate capability as a function of temperature, pulse capability, self-discharge and storage characteristics, as well as mission profile capability. This paper describes the Mars 2001 Lander mission battery requirements and contains results of the cell testing conducted to-date in support of the mission,  相似文献   

6.
Since they were first introduced in the early 1990s, lithium ion batteries have enjoyed unprecedented growth and success in the consumer marketplace. Combining excellent performance with affordability, they have become the product of choice for portable computers and cellular phones. Building on the same energy and life cycle attributes, which marked their consumer market success, but adding new high power storage capability, lithium ion technology is now poised to play a similar role in the transportation, military, and space sectors. With major program in various aspects of electric and hybrid electric vehicles, Saft has developed a family of battery products that address the power and energy storage where lightweight, long life, and excellent energy or power storage capabilities are needed. Significant progress in the packaging and control of high power, yet compact, batteries has been accomplished for a variety of vehicle applications. This paper discusses the charger and balancing strategies of one of this family of products  相似文献   

7.
《中国航空学报》2021,34(7):114-123
The purpose of this paper is to demonstrate an integrated optimization scheme for a solar-powered drone structure. Consider a primary beam in the wing of large aspect ratio, where 100 lithium batteries are assembled. In the proposed integrated optimization, the batteries are considered here as parts of the load-carrying structure. The corresponding mechanical behaviors are simulated in the structural design and described with super-elements. The batteries layout and the structural topology are then introduced as mixed design variables and optimized simultaneously to achieve an accordant load-carrying path. Geometrical nonlinearity is considered due to the large deformation. Different periodic structural configurations are tested in the optimization in order to meet the structural manufacturing and assembly convenience. The optimized designs are rebuilt and tested in different load cases. Maintaining the same structural weight, the global mechanical performances are improved greatly compared with the initial design.  相似文献   

8.
Flywheel technology: past, present, and 21st century projections   总被引:2,自引:0,他引:2  
This paper describes the present status of flywheel energy storage technology, or mechanical batteries, and discusses realistic future projections that are possible based on stronger composite materials and advancing technology. The origins and use of flywheel technology for mechanical energy storage began several hundred years ago and was developed throughout the Industrial Revolution. One of the first “modern” dissertations on the theoretical stress limitations of rotational disks (isotropic only) is the seminal work by A. Stodola whose first translation to English was made in 1917. The next big milestones were during the 1960s and 1970s when NASA sponsored programs proposed energy storage flywheels as possible primary sources for space missions. However, it was not until the 1980's when microelectronics, magnetic bearing systems and high power density motor-generators became enabling technologies. The next decade proved that a mechanical battery could surpass chemical batteries for many applications  相似文献   

9.
增材制造技术(AM)是一种基于离散-堆积原理,以计算机模型数据来加工组件的新型制造技术。激光选区熔化(SLM)作为增材制造领域的一项重要技术,以其一体化制造特点和在复杂结构零部件制造领域的显著优势,成为航空航天制造领域的重点发展技术和前沿方向。本文综述了SLM技术的材料体系和应用领域,主要对SLM技术的最新工艺研究和航空航天领域的典型应用进行细致分析。重点阐述SLM铁基合金、镍基合金、钛合金和铝合金等材料体系的研究进展及成果。SLM技术在各领域广泛应用的同时,也存在成形材料内部缺陷多、高性能材料的裂纹及变形、标准体系的欠缺和粉末材料兼容性低等诸多问题和不足之处,使其发展受到一定制约,需要在这些方面做更深入的工作。  相似文献   

10.
航天智能控制技术让运载火箭“会学习”   总被引:2,自引:0,他引:2  
包为民 《航空学报》2021,42(11):525055-525055
高可靠和智能化是未来智能航天器的主要特点,本文聚焦航天器高可靠、智能化的发展需求。梳理了中国运载火箭从无到有、从有到全的发展历程,提出了航天智能技术从航天器的可靠性做起,航天器的可靠性从航天智能控制做起,航天智能控制从"会学习"的火箭做起。围绕航天智能控制技术如何使运载火箭"会学习"的发展架构,进一步探索了"边飞边学"和"终身学习"智能控制技术的理论研究和应用现状,支撑中国"会学习"运载火箭高可靠和智能化的发展。  相似文献   

11.
树脂基复合材料轻质结构具有轻质、高性能等优点,广泛应用于航天航空、高速列车和船舶等领域。通过对传统树脂基复合材料轻质结构制造工艺的综述分析,发现传统制造工艺具有过程复杂、周期长和生产成本高等缺陷,限制了树脂基复合材料轻质结构的发展。3D打印是一种先进的零件成形工艺,可实现复杂结构零件的快速制造,为高性能复合材料轻质结构的一体化制造提供了可能。介绍了树脂基复合材料轻质结构3D打印的研究进展,提出了基于连续纤维增强热塑性复合材料3D打印的高性能复合材料轻质结构的一体化制造工艺,并对其性能开展了初步研究。  相似文献   

12.
Reliability comparison of matrix and other converter topologies   总被引:1,自引:0,他引:1  
Several rectifier-inverter and matrix converter topologies suitable for aerospace applications are compared, and their reliability is predicted. The military handbook MIL-HDBK-217F guidelines have been used to predictreliability. The matrix converter has several attractive features for aerospace applications such as potential size and weight savings. Although the matrix converter has a higher number of semiconductor switches, they are subjected to a lower voltage stress, which decreases their failure rate. This results in the reliability indicators of the different converter topologies being very similar  相似文献   

13.
《中国航空学报》2020,33(4):1252-1259
Combination of topology optimization and additive manufacturing technologies provides an effective approach for the development of light-weight and high-performance structures. A heavy-loaded aerospace bracket is designed by topology optimization and manufactured by additive manufacturing technology in this work. Considering both mechanical forces and temperature loads, a formulation of thermo-elastic topology optimization is firstly proposed and the sensitivity analysis is derived in detail. Then the procedure of numerical optimization design is presented and the final design is additively manufactured using Selective Laser Melting (SLM). The mass of the aerospace bracket is reduced by over 18%, benefiting from topology and size optimization, and the three constraints are satisfied as well in the final design. This work indicates that the integration of thermo-elastic topology optimization and additive manufacturing technologies can be a rather powerful tool kit for the design of structures under thermal-mechanical loading.  相似文献   

14.
In order to realize the operational and service cost savings through the use of rechargeable batteries, the dismounted soldier is burdened with the weight, volume and/or charging logistics of the batteries. By providing the soldier with a high energy density source and a lightweight compact battery charger, the burden imposed by rechargeable batteries in the forward field can be minimized. Zinc-air batteries have the potential for meeting the energy demands of forward battlefield charging. They are attitude insensitive, have a high specific energy and are inherently inexpensive, lightweight and safe  相似文献   

15.
Electro Energy Inc. (EEI) is developing high power, long life, bipolar nickel-metal hydride batteries for aerospace applications. Bipolar nickel-metal hydride designs allow for high energy and high power designs with a 25 percent reduction in both weight and volume as compared to prismatic and/or cylindrical Ni-MH designs. Utilizing a sealed wafer cell design EEI has demonstrated a 1.2 kW/kg power capability. Prototype designs have achieved 70 Wh/kg. Designs studies show 80 Wh/kg are achievable with EEI's state-of-the-art technology. The sealed wafer cell is the building block for EEI's high power and high voltage bipolar batteries making the assembly easy and significantly lower in cost. Satellite and aircraft batteries are being developed which provide high power and long life. Sealed cells now show excellent rate capability and life. Cells tested in a low earth orbit (LEO) cycle have reached 9000 cycles and continue on test. High power, bipolar battery designs are ideal in applications where using conventional aerospace battery technology would require excessive capacity; weight and volume, thereby reducing usable payload on the vehicle  相似文献   

16.
The MEMS aerospace market has its own specificities in terms of market size, standards, and performance characteristics (very long term stability, reliability, and safety levels). Improvements are needed for future applications. THALES Avionics has a twenty-year experience in quartz and silicon MEMS design and manufacturing and is recognized as a leader by the French MOD in this field. MEMS pressure sensors and accelerometers are manufactured in large volume and used for safety-critical applications. THALES technology policy focused on planar architecture, die vacuum packaging, and deep reactive ion etching (DRIE) allowing good characteristics for sensors in development. A Silicon Vibrating Beam Accelerometer single chip is now under development. Its operating principle is described with two resonators in push-pull configuration. A tuning fork planar rate gyro is also developed with exactly the same technology for industrial efficiency. Performance results will be addressed. The development and industrialization road-map of theses inertial products is described for the following five years. Gyro-compassing grade inertial sensors would be available during the next decade allowing low-cost, high-grade navigators using simultaneously GNSS receivers and inertial MEMS navigators.  相似文献   

17.
Flywheel technology development program for aerospace applications   总被引:2,自引:0,他引:2  
An overview of advanced flywheel development for energy storage in aerospace applications is presented. The advantages offered by this emerging technology are described and the current NASA approach toward developing the technology is presented  相似文献   

18.
轻合金双激光束双侧同步焊接(Double Laser-Beam Bilateral Synchronous Welding,DLBSW)技术是一项极具应用前景与发展潜力的先进技术,对实现航空航天壁板结构的轻量化与高效率制造具有重要意义。然而,由于轻合金本身的材料特性与DLBSW技术的特殊性,轻合金T型结构DLBSW技术仍然存在诸多细节问题有待深入探索。分析了轻合金T型结构DLBSW技术的焊接冶金特点与稳定性,重点研究了DLBSW接头中焊接缺陷的形成机理与抑制措施,考察了T型接头的力学性能与断裂机理。此外,探讨了轻合金T型结构DLBSW过程数值模拟研究的重要意义。  相似文献   

19.
航天电磁继电器可靠性容差分析技术的研究   总被引:4,自引:0,他引:4  
航天电磁继电器是在航天电子系统中完成信号传递、执行控制、系统配电等功能的主要电子元器件之一,其可靠性直接影响整个航天电子系统的可靠性。航天继电器可靠性设计技术是其产品可靠性工程的关键技术。本文分析了当前各领域可靠性研究现状及航天电磁继电器产品的可靠性现状与问题,提出并建立了基于正交试验表的电磁吸力可靠性容差分析数学模型、基于概率统计方法的机械反力可靠性容差分析数学模型及基于“应力-强度干涉法”的吸反力配合特性可靠性容差分析数学模型。以某型号航天电磁继电器为例,进行了可靠性容差分析与研究,给出了对航天电磁继电器可靠性设计具有指导作用的重要结论。  相似文献   

20.
曹龙超  周奇  韩远飞  宋波  聂振国  熊异  夏凉 《航空学报》2021,42(10):524790-524790
激光选区熔化(SLM)技术被认为是最有应用前景的增材制造技术之一,已应用于航空航天、医疗器械等领域。然而,如何确保构件质量的可靠性和制造的可重复性是SLM面临的最大挑战,已被认为是限制SLM及其他金属增材制造技术发展和工业应用的最大壁垒。其中,主要原因是SLM过程中会产生难以控制的缺陷。因此,对SLM进行过程监测和实时反馈控制是解决这一挑战的重要研究方向,也已成为学术界和工业界的研究热点之一。通过对近十年该领域的文献调研,综述了金属激光增材制造中常见的冶金缺陷及其产生机理,对金属增材制造过程产生的信号及其监测手段,如声信号、光信号及热信号等进行了详细描述;总结了信号数据的处理方法,包括传统的统计处理方法和新兴的基于机器学习的智能监测方法;随后,综述了金属增材制造过程的质量控制方法,包括非闭环控制和闭环控制,并对全文进行了总结,展望了未来SLM智能监测和控制领域值得深入的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号