首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 16 毫秒
1.
刘巧英  于洋 《推进技术》2013,34(2):168-172
燃气涡轮发动机旋转叶轮的叶尖间隙对其性能和结构可靠性均有较大影响,因此国内外的相关研究机构在叶尖间隙控制方面进行了大量的数值分析和试验测试工作.利用Ansys软件采用流-固-热耦合分析方法,分析了某型发动机斜流压气机叶片、机匣的热、机械、气动载荷产生的结构响应,得到了发动机不同稳态状态点下斜流压气机叶尖间隙沿轴向的分布规律.结果表明:斜流压气机叶尖和机匣位移响应沿轴向的变化趋势一致,位移响应的最大值均位于机匣曲率最小的位置;在机械载荷最大点,叶尖间隙小于设计点相应值,而在热载荷最大点,叶尖间隙远大于设计点相应值.  相似文献   

2.
航空发动机风扇叶片与机匣刮蹭分析及结构设计   总被引:1,自引:1,他引:0  
针对异常载荷下,航空发动机宽弦风扇叶片的叶尖与机匣刮蹭变形及损伤特征缺乏数据支持,而传统理论计算方法存在较大的误差问题,建立了宽弦风扇叶片叶尖刮蹭显式动力学分析模型,采用宽弦风扇叶片与机匣刮蹭试验数据,对分析模型的计算精度进行了验证。基于分析模型进行了仿真参数的敏感度分析,得到了叶片与机匣刮蹭后叶片变形及机匣损伤规律。研究结果表明:叶尖伸长量对转子转速非常敏感,叶尖径向伸长量增加速率远大于转速增加值,因此在叶片设计中应考虑到风扇叶片极限转速下叶尖伸长量。同时需要选取合理的扭转角度以满足叶片安全性和气动性能的要求。在风扇机匣包容区设计中应主动考虑异常载荷的影响,增大安全性设计域度;设计合理的耐磨层材料参数,减小风扇叶片对其冲击损伤。采用该方法可以提高叶尖间隙控制精度,减小刮蹭对叶片和机匣造成的损伤。   相似文献   

3.
高压压气机径向间隙分析   总被引:1,自引:1,他引:0       下载免费PDF全文
于洋  刘巧英  沈倍毅  高星 《推进技术》2013,34(3):339-346
针对航空发动机高压压气机,综合考虑气动载荷、离心力载荷、温度载荷耦合作用,建立了压气机径向间隙分析模型,获得了3个典型工况下的流场特征以及叶片的变形、应力分布,高压压气机转子叶尖径向间隙沿轴向变化的分布规律以及轴流压气机转子与机匣的间隙范围.计算结果显示在设计点和转速最高点,斜流压气机转子叶尖与机匣发生碰磨,与试验结果一致,验证了计算方法的正确性,也为建立合理有效的压气机径向间隙分析方法提供了思路.  相似文献   

4.
在不同叶尖间隙下,对高负荷风扇转子的特性进行了研究;通过数值方法分析了叶尖间隙对转子特性的影响。结果表明:适当小的叶尖间隙可以使转子获得较好的性能;作为泄漏流的反应,外壁机匣上所形成的静压槽随着间隙的增大、反压的提高而扩大;在不同叶尖间隙下,叶尖附面层和泄漏涡的破裂对风扇转子的失速起不同作用。  相似文献   

5.
高压涡轮瞬态叶尖径向运行间隙计算分析   总被引:1,自引:0,他引:1  
为了改善现代航空发动机整体性能和可靠性,将热分析和结构分析耦合起来,以航空发动机从地面启动到巡航这一过程为研究对象,对涡轮转子进行瞬态叶尖径向运行间隙计算分析。在计算中考虑了材料、温度和离心载荷的非线性,以及惯性力和温度的复杂的边界条件,分别对叶片、轮盘和机匣的变形进行计算和分析,进而得出涡轮叶尖径向运行间隙的变化规律以及与试验相符合的计算结果。该计算分析方法为涡轮叶尖径向运行间隙的概率分析和优化设计奠定了基础。  相似文献   

6.
航空发动机涡轮叶片径向变形的概率分析   总被引:9,自引:1,他引:8       下载免费PDF全文
为描述航空发动机涡轮叶片径向位移的变化规律,改善叶尖间隙设计和控制的合理性,考虑多种随机变量,融合有限元和响应面方法进行了叶片径向变形的概率分析。通过对涡轮叶片在典型载荷下的热分析和结构分析,计算出叶片变形随时间的变化规律,并找出最大位移点作为概率分析的计算点;在计算点处考虑热载荷和离心载荷作用,结合响应面拟合蒙特卡洛法计算出了危险点处的叶片径向变形的分布概率和符合设计要求的可靠度,并分析了影响间隙量的随机因素的灵敏度。结果表明:叶片径向变形量和安全变形概率基本符合设计要求;影响叶片径向位移变化的主要因素是温度、转速和质量。  相似文献   

7.
为了研究涡扇发动机暖机程序是否合理,分析了暖机与不暖机对发动机加速过程中压气机叶尖间隙变化造成的影响,并进行了两种情况下变化规律的对比分析。建立了转子模型,在综合考虑转子离心载荷与温度载荷基础上,运用该发动机暖机与不暖机情况下台架测试数据绘制载荷谱,并基于Workbench平台采用热—固耦合分析方法对加速过程中发动机转子径向位移进行仿真计算。根据转子径向间隙计算模型,利用仿真结果计算获得暖机与不暖机情况下的叶尖间隙。结果表明,充分暖机后的压气机叶尖间隙值明显小于不暖机情况下的间隙值,相对原始装配间隙,两者在慢车状态时相差19.86%,在最大加力状态相差8.04%,且加速过程中叶尖间隙变化规律均为随时间增加而不断减小,在慢车至中间状态过程中迅速减小,在加力过程中缓慢减小。  相似文献   

8.
某风扇试验件在进入喘振后发生转静子碰摩故障,转子叶片与其上游静子叶片的尾缘发生碰摩并产生掉块、卷边等损 伤。为明确故障发生的原因,结合数值仿真和试验结果排除了共振和颤振的发生。根据压力脉动数据确定了喘振载荷,并考虑在 喘振作用下轴向力轻载反向、转速升高、机匣变形、静子叶片变形等因素的影响,开展了基于尺寸链的转静子叶片热态间隙分析, 对叶片在喘振载荷作用下的碰摩响应进行了模拟分析。结果表明:在喘振载荷短时冲击作用下,转子叶片向后缘方向产生3.42 mm的 变形,收敛型风扇通道使得径向间隙明显减小,叠加风扇转速升高、轴向力轻载反向等因素,转子叶片叶尖尾缘轴向向后的位移超 出机匣涂层覆盖区域0.41 mm,导致尾缘与机匣基体的径向间隙为-0.44 mm,进而发生径向碰摩;在多次往复的大冲击载荷作用 下,转子叶片向前与上游静子叶片发生轴向碰摩。合理设置机匣耐磨涂层长度和流道倾角可以有效降低喘振过程中碰摩的风险。  相似文献   

9.
为了验证风扇转子叶片反扭设计的准确性及获取不同气动状态、不同转速条件下叶片扭转变形情况,建立叶片扭转应用理论模型,开发了基于叶尖定时技术的非接触式叶片叶尖扭转角测试技术,在发动机风扇转子叶片上开展了旋转状态下的叶片叶尖扭转角测试和仿真计算。结果表明:叶片叶尖扭转角变形理论计算值为1.5°,实测值为1.4°;采用统计分析方法计算稳态转速风扇转子叶片所有叶片叶尖扭转角最大标准偏差为0.1°,是因加工误差、装配误差、气流扰动和振动因素导致的;单个叶片叶尖扭转角最大标准偏差为0.01°,是因气流扰动和振动因素影响所导致的。该项测试技术成功地验证了叶型反扭设计,稳态转速风扇转子单个叶片叶尖扭转角小于所有叶片叶尖扭转角的离散度。  相似文献   

10.
航空发动机转子叶尖间隙及同心度是影响发动机性能和安全的重要参数。组建了一套电容法测试系统,并成功用于发动机风扇转子叶尖间隙及同心度测量。通过分析测量数据,得到了发动机风扇转子叶尖间隙及同心度随转速和时间的变化规律。结果表明:慢车以下状态时,转速升高,转子叶尖间隙减小,转子向下偏移;慢车以上状态时,转速升高,转子叶尖间隙减小,转子向上偏移;最大状态时,部分测点存在较大叶尖间隙,同心度均不为零。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号