首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 410 毫秒
1.
新型纤维金属混合层板结构的疲劳裂纹扩展与分层行为   总被引:1,自引:0,他引:1  
为了研究一种新型混合层板的损伤容限性能,针对两种铺层混合层板结构进行了应力比R=0.1,-1下两种锯切缺口尺寸试样的疲劳裂纹扩展试验,对比分析了获得的裂纹扩展a-N曲线数据,并通过对试样进行腐蚀去层,研究了层板的各层分层形态。结果表明,在应力比R=0.1时该新型混合层板疲劳裂纹扩展性能明显优于铝合金板;预浸料两侧添加胶膜比不添加胶膜会导致较好的疲劳裂纹扩展性能;由于裂纹桥接机制作用,锯切缺口尺寸较短层板试样比较长层板试样有较好的裂纹扩展性能;层板中心层铝板较其它层铝板裂纹扩展明显滞后;内层铝板与预浸料间沿裂纹方向呈近似三角形分层。  相似文献   

2.
纤维金属层板分层扩展的优化分析   总被引:2,自引:0,他引:2  
以纤维金属层板疲劳裂纹扩展与分层扩展预测模型为基础,对分层扩展的影响因素,包括单层厚度、残余应力、增强纤维的弹性模量、层间结合强度和胶粘剂的剪切模量等,进行了分析。研究表明,降低材料的单层厚度和改善层板的残余应力系统可显著降低层板的分层扩展速率,而提高层间结合强度和增强纤维的弹性模量对降低层板的分层扩展速率的作用相对较小。  相似文献   

3.
混杂纤维复合材料层板的抗弹冲击性能   总被引:1,自引:1,他引:1  
为了考察混杂纤维复合材料层板的抗弹冲击性能,采用碳纤维织物或玻璃纤维织物与芳纶纤维织物复合材料层共固化的方式,利用热压罐成型工艺制备了几种具有不同面密度及铺层结构的混杂纤维复合材料层板,并进行抗弹冲击性能测试、表观形貌观察和无损检测分析。结果表明:纯芳纶纤维及混杂纤维复合材料层板的钢弹冲击破坏模式相同,均为表层剪切破坏,中间层分层破坏,背层拉伸断裂破坏;层间混杂顺序对复合材料层板的分层缺陷面积有较大影响,当碳纤维层作为背层时,层板的分层缺陷面积为12 863. 6 mm2小于玻璃纤维层作为背层时(17 400. 5 mm2);当芳纶层作为背板时,混杂纤维复合材料层板冲击后分层缺陷面积与纯芳纶的相当(14 151. 0~14 927. 0 mm2)。混杂纤维复合材料对层板的抗弹冲击性能有较大影响,混杂后复合材料的弹道极限速度(v50)均有一定程度的提高,其中玻璃纤维/芳纶复合材料的v50从纯芳纶复合材料层板的193. 08提高至204. 33 m/s。将碳纤维层或玻璃纤维层作为着弹面层的混杂纤维复合材料层板具有更优异的抗弹冲击性能,其贯穿比吸能(BPI)均优于纯芳纶复合材料层板。  相似文献   

4.
 研究了疲劳载荷与静态拉伸条件下 ARALL层板孔边分层的状态 ,分析了不同残余应力对该层板孔边分层损伤的影响。结果表明 ,两种载荷条件下的分层破坏是完全不同的。疲劳载荷下裂纹扩展过程中伴随分层的典型的情况是呈对称双椭圆形 ,静态拉伸作用下层板边缘效应更加明显。给层板施加适当的预应力可以提高其抵抗分层损伤的能力  相似文献   

5.
对含单个分层损伤国产碳纤维CCF300与T300碳纤维复合材料层合板进行压缩试验,通过对同种中等厚度含不同分层大小、不同分层位置的层合板压缩失效后的宏微形貌及超声波C扫描检测结果的分析,研究了分层大小及分层位置对于国产碳纤维及T300纤维复合材料层合板失效模式造成的影响,比较了两种纤维复合材料失效模式的异同.结果表明,预制分层在压缩过程中都发生了扩展,而分层位置是影响其压缩失效模式较为重要的因素.对于分层位置较深的层合板,其失效模式往往为首先发生分层扩展,进而子层板剪切屈曲失效.总的分析表明,国产碳纤维复合材料与T300纤维复合材料含分层损伤层合板的压缩失效模式基本相同.   相似文献   

6.
为了分析复合材料层板疲劳分层扩展行为,基于Abaqus有限元分析平台,建立分层扩展复合材料层板有限元分析模型。选用基于能量释放率的分层扩展判据,结合剩余强度模型弱化材料性能,引入VUMAT用户子程序实现模型疲劳损伤失效的判断及材料刚度性能的折减,模拟含分层复合材料层板在疲劳压缩载荷作用下的分层扩展行为。结果表明:分层长度随着疲劳载荷地施加不断增大,但扩展速率逐渐减小,最终分层长度达到稳定值,与实验结果吻合良好。  相似文献   

7.
采用基于Mindlin一阶剪切理论的连续壳单元,建立了预测含分层损伤复合材料层板在压缩疲劳载荷作用下的分层扩展3D模型,分析了含穿透分层复合材料层板在压缩疲劳载荷作用下的分层扩展行为。利用累积损伤理论,对层板内出现的各种典型损伤进行相应的刚度折减,并在循环加载过程中对材料性能进行强度弱化。利用虚裂纹闭合技术(VCCT)计算分层前缘处的能量释放率,结合混合断裂判据判断分层是否扩展,进而得到压缩疲劳载荷作用下分层扩展规律。计算模型通过大型商用有限元软件和自编程序实现。通过对数值仿真结果和试验结果进行比较,验证了模型的合理性和准确性。  相似文献   

8.
为了探索Glare层板的成形性能特点,采用单向拉伸实验和三点弯曲实验,分析研究了Glare 2A,Glare 2B和Glare 3层板的基本成形性能,并借助扫描电子显微镜分析了Glare层板的失效特征。结果表明:纤维铺层方向对材料的成形性能存在显著影响,Glare 2A层板抵抗塑性变形的能力强,且难以发生厚向变形:采用σ=σy+Kεn硬化模型拟合真实应力-应变曲线,其相关系数最大,拟合结果最好:Glare 2A的弯曲回弹量最大,其弯曲破坏时,内表层受压应力,以皱缩和压缩断裂为主,外表层受拉应力,以纤维拉伸断裂和分层为主;对于Glare 2B层板,其弯曲回弹量最小,主要以基体破坏为主:通过滚弯成形验证了实验所得结果的准确性。  相似文献   

9.
层合板本质上由基体树脂将单层板粘在一起,其分层萌生必然从基体树脂破坏开始。基于此,通过分析基体树脂的破坏来预测层合板的分层萌生载荷,通过有限元计算出轴向拉伸载荷下层合板的应力场,沿厚度方向平均来消除自由边缘处层间应力的奇异性,之后根据桥联模型计算纤维和基体树脂应力,并用Mohr判据来判断基体树脂是否破坏。预测了T800/914层合板[±θn]s的分层萌生载荷,与实验结果吻合良好;本工作的最大优点是只需组分材料的性能即可预测层合板的分层萌生载荷。  相似文献   

10.
正分层是复合材料层合结构主要的损伤形式,复合材料层间性能较弱,在制造过程中很容易出现初始分层,复合材料层板的不同铺层之间材料属性不匹配也极易引发分层,分层经常发生于自由边,低速冲击这样的外力也会诱  相似文献   

11.
双分层损伤层合板屈曲的有限元分析   总被引:5,自引:0,他引:5  
朱菊芬  郑罡 《航空学报》1999,20(6):562-564
采用参考面单元技术,建立双分层损伤层合板的有限元模型,研究了不同边界条件下,分层尺寸和位置对层合板压屈载荷的影响。大量计算表明,双分层损伤层合板的压屈载荷完全由其最弱的子层确定。在一定的分层位置范围内,双分层和相应单分层的压屈载荷有极好的一致性。给出的压屈载荷的等值线图可以清晰地描述压屈载荷随分层位置的变化规律。  相似文献   

12.
含分层损伤复合材料层合板前后屈曲行为研究   总被引:9,自引:1,他引:8  
采用基于Mindlin一阶剪切理论的四节点板单元,分析了简支和固支两种边界条件下含圆形分层复合材料层合板前后屈曲行为。结果表明,尽管浅部分层的存在使层合板的前屈曲临界载荷大幅度下降,但层合板仍能继续承受很大的后屈曲载荷,这种情况下的前屈曲是由于分层部分的局部行为造成的。同时,在相同的铺设和分层厚度及边界条件下,分层半径越大,后屈曲临界载荷越低,固支下的后屈曲临界载荷比简支下的临界载荷高。  相似文献   

13.
分层损伤是复合材料层合板结构最主要的损伤形式,其主要由于制造缺陷以及受到外力冲击而产生。本文对含圆形分层损伤复合材料层合板在弯曲载荷作用下的屈曲行为进行研究,首先利用RayleighRitz法对含圆形分层复合材料层合板进行二维模型建立,通过此理论模型可以计算出材料屈曲临界弯矩值以及在特定弯曲载荷下中心点的离面位移值。随后,采用三维数字图像相关方法对分层材料进行实验研究,得到了分层材料在弯曲载荷作用下的屈曲形貌以及其中心点的载荷—位移曲线。通过实验验证了理论的可行性与准确性,可用于对含圆形分层材料在弯曲载荷作用下屈曲临界弯矩以及中心点离面位移大小的初步估算。  相似文献   

14.
《中国航空学报》2021,34(7):62-72
Delamination represents one of the most severe failure modes in composite laminates, especially when they are subjected to uniaxial compression loads. The evaluation of the delamination damage has always been an essential issue of composite laminates for durability and damage tolerance in engineering practice. Focusing on the most typical and representative elliptical delamination issue, an analytical model simultaneously considering the conservative buckling process and non-conservative delamination propagation process is implemented. Various computational cases considering different delamination depths, directions, aspect ratios, and areas are established, and the predicted results based on the analytical model are carefully compared. Effects of these geometrical delamination parameters on the buckling, delamination propagation, and failure behaviors of composite laminates are thoroughly analyzed, and innovative evaluation principles of the delamination damage have been concluded. It is found that the delamination area is the key factor that truly affecting the failure behaviors of delaminated composites, and the local / global buckling and failure loads show clear linearity with the delamination area, whilst the delamination depth and direction only have slight effects.  相似文献   

15.
针对飞机复合材料加筋层压板结构,设计了含有预埋分层缺陷的复合材料加筋层压板的典型试验件以及压缩试验装置,研究了分层缺陷位置和大小对加筋板压缩强度的影响。研究结果表明:分层缺陷会改变加筋板的破坏模式,浅表分层在压缩过程中表现为局部屈曲模态,局部屈曲强度只有其破坏强度的30%~60%,分层直径增加,局部屈曲强度降低。局部屈曲发生后,加筋板尚可进一步承载,直至层板失稳破坏。本文给出的数据和结论对实际飞机结构设计的参数确定和生产过程中的超差问题处理具有重要参考价值。  相似文献   

16.
费志中 《航空学报》1986,7(6):586-595
在足够大的压力作用下,层合板中的分层(delamination)会产生屈曲和后屈曲。本文分别用力法和位移法求解了受压固支正交异性矩形分层的屈曲和后屈曲问题,把一组非线性偏微分方程构成的边值问题化为求解一组非线性代数方程组,最后给出了有关的数值结果。  相似文献   

17.
受压正交异性矩形分层的屈曲和后屈曲   总被引:1,自引:0,他引:1  
费志中 《航空学报》1988,9(11):565-567
 一、引言 为了给飞行器的设计提供理论依据,采用力法分析了不同材料的受压固支、简支正交异性矩形分层模型的屈曲和后屈曲,把一组非线性偏微分方程构成的边值问题化为求解一组非线性代数方程,进而用梯度法解之,最后给出有关的计算结果,并说明了支承条件的影响。  相似文献   

18.
含分层损伤复合材料层合板振动特性   总被引:1,自引:0,他引:1  
针对复合材料层合板分层损伤区域上、下子板的畸变模态,采用自定义矩阵单元模拟其损伤区的接触刚度,建立了一种合理的层合板分层损伤有限元振动分析模型;在此基础上研究了分层深度和分层大小对复合材料层合板振动特性的影响.数值模拟结果与实验结果的对比表明:采用的自定义矩阵单元可以有效地模拟层合板的分层损伤,模态计算值与实验值的最大误差为10.67%,最小误差为0.34%;分层深度和分层大小对复合材料层合板振动特性有较大影响,随分层深度变化,固有频率最多下降50%;随分层大小变化,前4阶固有频率最多下降12%.   相似文献   

19.
含表面缺口复合材料层压板的屈曲破坏   总被引:2,自引:1,他引:1  
胡自力 《航空学报》2000,21(1):25-29
通过实验研究和理论分析探讨了含表面缺口复合材料层压板的屈曲破坏。采用电测和声发射技术对层压板的受压力学行为进行观测和分析。作为比较,对无缺口层压板也进行了压缩试验,尽管2种层压板试样随载荷增加到一定值时都会发生屈曲,但它们的破坏过程仍有着显著的差别。利用层压板刚度减少技术推导了含表面缺口复合材料层压板的临界应力表达式。理论预测结果和试验结果能够较好地吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号