首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
调频连续波合成孔径雷达(FMCW SAR)是一种新近提出来的成像雷达体制,它结合调频连续波与合成孔径成像技术,具有体积小、重量轻、成本低、分辨率高等一系列优点。从频谱的角度进行分析,FMCW SAR的距离分辨率取决于频率测量分辨率。文章研究了一种FMCW SAR高距离分辨率成像算法——利用FFT得到差频信号谱峰的粗略范围,再对这一范围进行ChirpZ变换,从而实现距离高精度估计,并且避免了大的计算量。仿真结果表明该方法的有效性。  相似文献   

2.
Radar target classification of commercial aircraft   总被引:1,自引:0,他引:1  
With the increased availability of coherent wideband radars there has been a renewed interest in radar target recognition. A large bandwidth gives high resolution in range which means target discrimination may be possible. Coherence makes cross-range resolution and radar images possible. Some of the problems of classifying high resolution range profiles (HRRPs) are examined and simple preprocessing techniques which may aid subsequent target classification are investigated. These techniques are applied to HRRP data acquired at a local airport using the Microwave Radar Division (MRD) mobile radar facility It is found that Boeing 727 and Boeing 737 aircraft can be reliably distinguished over a range of aspect angles. This augers well for future target classification studies using HRRPs  相似文献   

3.
It has been shown that radar returns in the resonance region carry information regarding the overall dimensions and shape of targets. Two radar target classification techniques developed to utilize such returns are discussed. Both of these techniques utilize resonance region backscatter measurements of the radar cross section (RCS) and the intrinsic target backscattered phase. A target catalog used for testing the techniques was generated from measurements of the RCS of scale models of modern aircraft and naval ships using a radar range at The Ohio State University. To test the classification technique, targets had their RCS and phase taken from the data base and corrupted by errors to simulate full-scale propagation path and processing distortion. Several classification methods were then used to determine how well the corrupted measurements fit the measurement target signatures in the catalog. The first technique uses nearest neighbor (NN) algorithms on the RCS magnitude and (range corrected) phase at a number (e.g., 2, 4, or 8) of operating frequencies. The second technique uses an inverse Fourier transformation of the complex multifrequency radar returns to the time domain followed by cross correlation. Comparisons are made of the performance of the two techniques as a function of signal-to-error noise power ratio for various processing options.  相似文献   

4.
The dominant complex natural resonances of radar targets are obtained via Prony's method applied to calculated and measured back-scattered ramp response waveforms. Subject targets are spheres, simple wire models of straight and swept wing aircraft, and realistic models of modern fighter aircraft. It is demonstrated that when the backscattered ramp response waveforms are obtained via Fourier synthesis of limited spectral range harmonic scattering data, some resonance locations at variance with those obtained from reaction integral equation search procedures are obtained. It is also shown, however, that the Prony deduced resonances can be used successfully in predictor-correlator target discrimination.  相似文献   

5.
High resolution 3D “snapshot” ISAR imaging and featureextraction   总被引:1,自引:0,他引:1  
We have developed a new formulation for three dimensional (3D) radar imaging of inverse synthetic aperture radar (ISAR) data based on recent developments in high resolution spectral estimation theory. Typically for non real-time applications, image formation is a two step process consisting of motion determination and image generation. The technique presented focuses on this latter process, and assumes the motion of the target is known. The new technique offers several advantages over conventional techniques which are based on the correlation imaging function. In particular, the technique provides for a direct 3D estimate (versus back projection to a 3D target grid matrix) of the locations of the dominant scattering centers using only a minimum set of independent 2D range-Doppler ISAR “snapshots” of the target. Because of the snapshot nature of the technique, it is particularly applicable to 3D imaging of sectors of sparse-angle data, for which the sidelobes of the correlation imaging integral become high. Furthermore, the technique provides for an estimate of amplitude and phase of each scattering center as a function of aspect angle to the target, for those aspect angles which encompass the set of 2D range-Doppler snapshots. Results illustrating the technique developed are presented for both simulated and static range data  相似文献   

6.
The potential for identifying aircraft using one or more radar range profiles, in conjunction with a correlator, is investigated. Two types of filter which maximize the expected value of certain correlation peaks are described. The effectiveness of one type of filter was investigated in identification experiments using an extensive data set of real radar range profiles of 24 different aircraft. The results suggest that reliable identification is possible provided aircraft aspect information is used and identifications are based on multiple profiles  相似文献   

7.
Synthetic Aperture Radar (SAR) is an airborne (or spaceborne) radar mapping technique for generating high resolution maps of surface target areas including terrain. High resolution is achieved by coherently combining the returns from a number of radar transmissions. The resolution of the images is determined by the parameters of the emissions, with more data giving greater resolution. A requirement of the Microwave Radar Division's SAR radar is to provide classification of targets. This paper presents a technique for enhancing slant range resolution in SAR images by dithering the carrier centre frequency of the transmitted signal. The procedure controls the radar waveforms so they will optimally perform the classification function, rather than provide an image of best quality. It is shown that a Knowledge-Based engineering approach to determining the waveform of the radar gives considerably improved performance as a classifier of targets (of large radar cross-section), even though the corresponding image is degraded  相似文献   

8.
Multipath and ground clutter analysis for a UWB noise radar   总被引:1,自引:0,他引:1  
An ultrawideband (UWB) random-noise radar operating in the 1-2 GHz frequency band has been developed and field-tested up to a 200 m range at the Environmental Remote Sensing Laboratory (ERSL) of the University of Nebraska. A unique heterodyne correlation technique based on a delayed transmitted waveform using a photonic delay line has been used to inject coherence within this system. The performance of this radar in the presence of ground reflections is investigated analytically and experimentally, and the mitigating effects of UWB waveform on multipath-induced interference are analyzed. In addition, the ground clutter statistics, in a look-down mode, are theoretically established and experimentally verified. The performance of this radar in detecting clutter embedded targets with small radar cross section (RCS) is also experimentally examined.  相似文献   

9.
The statistics of aircraft radar cross section (RCS) are estimated by fitting members of the chi-square family of distributions to empirical distributions obtained from blocks of RCS data, each block of data corresponding to a particular aircraft azimuth aspect. The parameters of the fitted distributions vary with azimuth aspect angle, type of aircraft, and radar frequency. Detection probabilities based on the estimated statistics are calculated and compared with detection probabilities based on Rayleigh statistics. This comparison indicates that the average value of radar cross section has much more effect on probability of detection than the normalized variance of RCS, and in the usual situation tends to mask the effect of the normalized variance on probability of detection.  相似文献   

10.
频率步进雷达数字信号处理   总被引:52,自引:3,他引:49  
毛二可  龙腾  韩月秋 《航空学报》2001,22(Z1):16-25
综述了频率步进雷达系统设计与信息处理中的主要问题,包括系统参数设计、目标抽取算法、与Chirp子脉冲的兼容性、与圆锥扫描体制的兼容性等等,并论述了不同情况下多普勒效应的影响及其解决方法,提出了相应的数字信号处理方案。  相似文献   

11.
This paper presents a target identification method based on an estimation of the natural frequencies of oscillation in transient radar signatures. The emphasis is placed upon signal modeling and estimation ation strategy rather than relating resonance locations to physical structures. Salient features of this identification method are: 1) target aspect angle is not needed, 2) multiple targets of the same type can be illuminated simultaneously, and 3) bandpass interrogation ion pulses can be used. The latter feature is compatible with existing radar facilities. The method is applied to some simulated transfer functions, and factors affecting estimate accuracy are discussed.  相似文献   

12.
A technique that effectively reduces the dynamic range of the input signal in a radar receiver prior to digitization is presented. The dynamic range reduction is accomplished through a process that predicts the next radar return signal from the previous return signals, generates a replica waveform, and subtracts this replica waveform from the radar return signal prior to digitization. This process allows the radar return signal to be digitized without distortion by an analog-to-digital converter (ADC) having a limited dynamic range. The full dynamic range of the radar return signal is then restored by adding the replica waveform to the ADC output. Test and evaluation results using both synthetic and recorded radar data demonstrate in excess of a 30-dB reduction in the dynamic range of the signal at the ADC input when strong clutter is present  相似文献   

13.
This presents recent progress of the state-of-the-art of space-borne radar technology in case of either earth-orbiting or planetary-orbiting satellites and space probes, respectively. In addition to that, recent progress is also discussed concerning specific inversion techniques to evaluate radar measurements; i.e., the art of deriving the relevant physical quantities to be determined such as terrain and depth profiles for planetary surface and/or subsurface structures ((3D)-profiles) from radar data measured depending on signal frequency, aspect angle, polarization, etc., as a function of time.  相似文献   

14.
建立了基于数字射频存储器技术构建雷达标校器的方法.该雷达标校器可灵活实现目标运动模拟、多普勒频率加载、目标RCS模拟、多目标模拟等功能,较传统的基于光纤延迟实现的雷达标校器更具有应用价值.针对实际应用需求提出了解决频率捷变的方案,给出了典型模拟策略所需数学模型.应用研究表明,基于数字射频存储器技术的雷达标校器具有较强的...  相似文献   

15.
Hardware-in-the-loop(HWIL) simulation technology can verify and evaluate the radar by simulating the radio frequency environment in an anechoic chamber. The HWIL simulation technology of wide-band radar targets can accurately generate wide-band radar target echo which stands for the radar target scattering characteristics and pulse modulation of radar transmitting signal. This paper analyzes the wide-band radar target scattering properties first. Since the responses of target are composed of many separate scattering centers, the target scattering characteristic is restructured by scattering centers model. Based on the scattering centers model of wide-band radar target, the wide-band radar target echo modeling and the simulation method are discussed. The wide-band radar target echo is reconstructed in real-time by convoluting the transmitting signal to the target scattering parameters. Using the digital radio frequency memory(DRFM) system,the HWIL simulation of wide-band radar target echo with high accuracy can be actualized. A typical wide-band radar target simulation is taken to demonstrate the preferable simulation effect of the reconstruction method of wide-band radar target echo. Finally, the radar target time-domain echo and high-resolution range profile(HRRP) are given. The results show that the HWIL simulation gives a high-resolution range distribution of wide-band radar target scattering centers.  相似文献   

16.
雷达天线系统隐身方法研究   总被引:1,自引:0,他引:1  
以飞行器为载体的雷达天线系统隐身,是飞行器隐身研究的一项重要课题,文中从时域、空域、带外及正交极化、带内同极化四个方面探讨了雷达天线系统隐身的基本原理。  相似文献   

17.
Moving target detection via airborne HRR phased array radar   总被引:1,自引:0,他引:1  
We study moving target detection in the presence of temporally and spatially correlated ground clutter for airborne high range resolution (HRR) phased array radar. We divide the HRR range profiles into large range segments to avoid the range migration problems that occur in the HRR radar data. Since each range segment contains a sequence of HRR range bins, no information is lost due to the division and hence no loss of resolution occurs. We show how to use a vector autoregressive (VAR) filtering technique to suppress the ground clutter. Then a moving target detector based on a generalized likelihood ratio test (GLRT) detection strategy is derived. The detection threshold is determined according to the desired false alarm rate, which is made possible via an asymptotic statistical analysis. After the target Doppler frequency and spatial signature vectors are estimated from the VAR-filtered data as if a target were present, a simple detection variable is computed and compared with the detection threshold to render a decision on the presence of a target. Numerical results are provided to demonstrate the performance of the proposed moving target detection algorithm  相似文献   

18.
为估算运载火箭的RCS(Radar Cross Section,雷达散射截面积),采用部件分解法对运载火箭进行电磁散射几何建模,根据飞行过程中运载火箭和雷达的几何关系建立雷达照射目标视线角的计算模型,并运用高频散射理论提出运载火箭RCS的仿真计算方法;最后,对运载火箭的静态RCS和动态RCS进行仿真计算与分析.结果表明:对运载火箭电磁散射几何建模合理可行,提出的火箭RCS计算方法可以满足工程应用需要.采用该方法仅修改几何建模中的模型结构和部分尺寸参数即可方便计算不同型号运载火箭的RCS特性,可以为航天测控雷达系统设计和布站优化提供依据.  相似文献   

19.
A technique is presented for maximizing the percentage of usable Doppler bandwidth throughout which a radar return can be detected while maintaining an acceptable clutter suppression. The technique employs the weighted Chebyshev approximation to the design of a transversal high-pass digital filter which has an optimal passband ripple for a given number of filter weights and associated integration gain consistent with the required increase in signal-to-noise ratio needed for acceptable probabilities of detection and false alarm. Conventional approaches to the design of a movingtarget arget indictor (MTI) filter which maximizes the improvement factor by clutter suppression typically improve the signal-to-background noise ratio over less than 50 percent of the range between dc and the pulse-repetition frequency fT. This technique can increase the usable bandwidth to 80 percent or more of fT. Two examples are included which utilize parameter values from the Army Missile Command's experimental radar and demonstrate the interactive influence of such filter parameters as the number of weights, passband ripple and bandedge, and stopband attenuation and cutoff.  相似文献   

20.
One of the best known weakness of radar sensors in defense and security applications is the necessity to radiate a signal, which can be detected by the target, so being possible (easy in fact) that the target is alerted about the presence of a radar before the radar is alerted about the presence of a target. In this context, Low Probability of Interception (LPI) Radars try to use signals that are difficult to intercept and/or identify. Spread spectrum signals are strong candidates for this application, and systems using special frequency or polyphase modulation schemes are being exploited. Frequency hopping, however, has not received much attention. The typical LPI radar at this moment of the technology is a CW-LFM radar. The simplicity of the technology is its best point. Polyphase codes, on the other hand have the inherent advantage of high instantaneous bandwidth regardless of observation time. But the complexity of the hardware is also higher. FH signals have traditionally been considered of lower performance but higher complexity, due to the difficulties to compensate the individual dopplers for the individual range cells in the receiver. One important point is that an FH radar must be clearly distinguished from an agile frequency radar. In the latter, a pulsed signal is transmitted using different frequencies from pulse to pulse. In an FH radar the frequency changes must be during the pulse. In fact, in an LPI FH radar, a CW frequency hopped signal is used. A radar system concept is proposed in which it shows how these problems can be overcome in a tracking application. Also, the signal format is analyzed under the scope of future decade digital interceptors, showing that, in fact, this kind of signal exhibits improvement in some performances and requires a hardware that is only slightly more complex than that needed for CW-LFM systems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号