首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
常气压辉光放电等离子体控制翼型失速的数值模拟研究   总被引:6,自引:1,他引:5  
基于Shyy提出的大气压下均匀辉光放电等离子体与空气干扰的物理模型,通过求解电位势方程得到电场分布,得到了作用于流体上的电场力.通过数值求解考虑等离子体作用的流体运动控制方程,以NACA0015翼型低速绕流为对象,研究了常压辉光放电等离子体位置和个数控制翼型绕流分离的影响.位于分离点上游的等离子体能够有效地抑止翼型分离,而在分离区的等离子体对流动影响很弱,同实验结果一致,并给出了等离子体对翼型气动力影响的规律.  相似文献   

2.
等离子体气动激励抑制翼型失速分离的仿真研究   总被引:7,自引:4,他引:3  
通过求解表面放电的二维流体体力模型,建立了翼型等离子体流动控制的数学模型,得到等离子体气动激励诱导的体力和热量分布,与Navier-Stokes方程耦合求解.进行了低雷诺数条件下,等离子体气动激励抑制NACA0009翼型失速分离的数值仿真研究,研究了等离子体激励的强度、激励电极数目和激励位置对流动分离抑制和翼型升阻特性的影响.在雷诺数为58000、攻角为24°的情况下,施加等离子体激励后,升力系数由0.7449增大到1.2404;阻力系数由0.4012减小到0.3503.   相似文献   

3.
不可压缩湍流的多尺度模型   总被引:2,自引:2,他引:0  
基于可变时间间隔平均方法,提出了一种不可压缩湍流多尺度模型及平均流动方程.与传统的单尺度湍流模型不同,该模型在建立的过程中,保留了湍流的多尺度特性,结合平均流动方程,可以更好地预测湍流流场特征.通过模拟平面后台阶流动和不对称平板扩压器流动,并将预测结果与标准k-ε模型的预测结果对比,初步验证了其可信性及优越性.结果表明:计算所得的平面后台阶流动的流向再附长度与台阶边压力系数比比标准k-ε模型提高精度约20%;平板扩压器流动的回流区位置误差约为7%、倾斜壁面摩擦因数误差约为5%,而标准k-ε模型未能预测出分离现象.可以看出该模型适用于典型的分离流动,在湍流流场的预测中表现优异,具有一定的工程应用价值   相似文献   

4.
进行了等离子体气动激励抑制低速压气机叶栅角区流动分离的数值仿真研究,并进行了实验验证.小攻角情况下,叶片吸力面角区流动分离导致显著的尾迹总压损失.来流速度为50 m/s(雷诺数为223 000)时,等离子体气动激励可以有效的抑制角区流动分离,降低总压损失.激励电压、频率分别为10 kV和22 kHz时,50%叶高处的尾迹压力分布基本不变,60%和70%叶高处的最大总压损失分别减小了13.83%和10.74%.增加激励电极组数或激励电压,可以增强抑制效果.   相似文献   

5.
变冲角条件下等离子体对扩压叶栅性能的影响   总被引:1,自引:0,他引:1  
进行了不同冲角、不同电压以及不同电极安装位置下等离子体对大折转角扩压叶栅性能的影响研究.结果表明,当冲角增大时,分离流动加剧是叶栅损失增加的主要原因,而端壁附面层内的摩擦损失则由于流向速度的减小反而减少;等离子体在三种工况下(i=0°,5°,-5°)均可有效控制栅内流动分离、减小叶栅损失、增加叶片负荷,电压越大、电极安装位置越接近分离起始位置,其控制效果越明显;随着冲角的增加,等离子体减小能量损失的效果减弱;虽然电极沿整个叶高方向布置,但等离子体仅对约10%叶高以上的损失影响较为明显,同一电压下该范围内各叶高处的损失减小量也基本相同.   相似文献   

6.
端壁组合射流对高速扩压叶栅损失特性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
提出了一种端壁组合射流技术以控制进口马赫数0.67的高速扩压叶栅端区流动。通过前缘射流旋涡可以增强端壁附面层与主流间的流体交换,阻碍横向二次流动,减小角区低能流体堆积;而采用角区射流注入能量能够进一步减弱吸力面侧流动分离。以上组合控制方法可较单独采用前缘或角区射流更有效减小栅内损失,提高其气动性能。当角区射流位于近吸力面侧的分离起始位置附近时,其改善栅内流动的效果最佳;远离吸力面的端壁射流则可抑制端区低能流体横向迁移及其与分离区流体间的相互作用,但其减小损失的效果弱于近吸力面侧的射流。随着射流总压比的增加,组合射流减小损失的效果先增加后减小;过大的总压比会加剧射流与来流间的掺混损失,使得叶栅气动性能恶化。当射流总压比为1.2时,损失减小最大可达12.6%,而射流流量仅相当于叶栅进口流量的0.64%。  相似文献   

7.
辉光放电等离子体对边界层流动控制的机理研究   总被引:6,自引:1,他引:6  
本文求解电位势方程得到电场分布,假定电场强度大于击穿阈值的区域为等离子体区,给定电荷密度,得到了作用于流体上的电场力。通过求解带源项的NS方程,研究了一个大气压下的均匀辉光放电等离子体对边界层流动的影响,考察了电场力做功对流动的影响。本文研究结果同文献[6]一致,即电场力总体上使边界层流动加速。另外,电场力做功对流动参数的影响可以忽略。文献[6]给出的线化电场模型和本文得到的电场相比,具有较大的差别,该差别引起了流动参数显著差别。  相似文献   

8.
等离子体激励控制激波与边界层干扰流动分离数值研究   总被引:3,自引:1,他引:2  
针对高超声速进气道激波与边界层干扰流动分离控制问题,提出了一种低功率重频非定常激励方式,并基于雷诺平均Navier-Stokes(N-S)方程,从唯象学的角度出发,将等离子激励简化为功率密度源项,对比研究了定常与低功率重频非定常等离子体气动激励的作用机理与控制效果。结果表明:定常激励的能量沉积作用对于激波控制非常有效,并可诱导出斜激波,但是对于流动分离控制而言,其能量沉积显然过于强大,反而会使流动分离更加严重,无法满足控制要求;当采用低功率重频非定常激励方式时,对于不同功率密度的情况均存在最佳激励时长与频率,当功率密度为5.0×109W/m3时,最大射流速度可以达到895m/s,并且可以在一定程度上减弱激波与边界层干扰流动分离。   相似文献   

9.
等离子体激励抑制翼型失速分离的实验研究   总被引:12,自引:2,他引:10  
进行了低速、低雷诺数条件下等离子体激励抑制NACA0015翼型失速分离的实验研究,研究了等离子体激励电压、激励电极数目和激励位置对流动分离抑制效果的影响.在翼型吸力面敷设不对称电极布局的等离子体激励器.在来流速度为4.27m/s,雷诺数为4.96×104的情况下,未施加等离子体激励时,从攻角为9°起翼型吸力面发生显著的前缘流动分离;施加等离子体激励后,流动分离在攻角小于26°的情况下均能很好地重附到翼型吸力面表面.实验表明,流动分离越严重,对等离子体激励的强度要求也越高,等离子体激励的电压和电极组数也必须相应增大;给定的流动分离状态下,等离子体激励的电压和电极组数存在一个阈值;等离子体激励的最佳位置在流动分离起始点的前缘;雷诺数增大后,流动分离更难抑制.  相似文献   

10.
王子豪  梁国柱 《推进技术》2022,43(5):216-227
微通道换热器由于换热系数高、质量小等优点,在微电子系统与航空航天等领域具有极大的应用价值,但截至目前人们对微通道内流体的流动与换热特性仍知之甚少。本文针对平行平板式微通道,在连续介质区、低马赫数以及粘性热可忽略的情形下,采用分离变量法导出并简化了均匀热流边界条件下变物性气体的二维层流流动与换热过程的控制方程,进而计算得到了气体速度、压力、温度在通道内的分布规律,上述计算结果与对原始控制方程进行高精度直接数值求解的结果之间具有较好的一致性。研究结果表明:当马赫数小于0.3时,微通道的尺寸效应使得任一横截面上变物性气体的流动和换热参数分布与常物性下的分布存在相似性,气体密度沿通道长度方向的变化不对摩擦系数和努塞尔数的沿程分布造成显著影响;在给定通道结构和进出口参数的情况下,通道内气体密度的减小和流速的增大不能提高对流换热系数,对流换热系数可通过经典理论予以计算;相比常规尺寸通道,微通道内气体的加速过程更加显著,粘性切应力对加速过程起主导作用,并随马赫数的增大而增大;摩擦损失是气体在微通道内损失的主要部分。相关工作可为微通道换热器设计与高马赫数下流动特征的研究提供参考。  相似文献   

11.
平板附面层等离子体流动控制的数值模拟   总被引:3,自引:1,他引:2  
通过求解电场中的拉普拉斯方程和赫姆霍兹方程的变形形式,成功地将等离子体激励对平板附面层流动的影响,以体积力向量的形式引入到NS方程之中.借助求解的电荷密度,通过将计算结果与实验数据的对比,可确定德拜长度、最大电荷密度、形状因子等可调参数的取值原则,建立起平板附面层等离子体流动控制的数值模拟方法,为将等离子体流动控制方法应用于外流及内流场中的强剪切流动控制,奠定关键性的技术支撑.   相似文献   

12.
微波与等离子体之间的相互作用   总被引:1,自引:0,他引:1       下载免费PDF全文
根据微波和等离子的基本理论以及它们之间相互作用的原理,建立了由微波能、谐振腔内电场、工质流场、等离子体平衡场等组成的轴对称偏微分方程组。通过对模型的计算,获得了放电管内等离子体区的形状、电场、电子浓度和温度场,以及气体温度场。  相似文献   

13.
将等离子体对中性气体的作用模型化为彻体力矢量,求解带源项的Navier-Stokes方程,数值模拟了等离子体激励器在NACA0015翼型大迎角下的分离控制效果,彻体力为净电荷在外加电场作用下的电场力.解拉普拉斯方程得到外加电场分布,等离子体中的净电荷分布由泊松方程给出.为了较好地模拟分离涡的发展,采用了雷诺平均与大涡模拟相结合的脱体涡模拟(Detached Eddy Simulation)方法.通过与实验结果对比,发现该模型能较好地模拟等离子体激励器的控制作用.  相似文献   

14.
廖宏图 《推进技术》1999,20(4):75-80
研究了用经典四阶龙格-库塔法计算可压缩流场的可行性,并将其用到了电弧喷射推力器内部等离子体流场的数值求解中。应用情况表明,在结合了局域时间步长、隐式残值光滑加速收敛措施后,本格式能够成功地计算比较复杂的可压缩气体流场以及等离子体流场。有关计算结果揭示了气体流经电弧喷射推力器通道但无电流时形成的纯气动流场以及有电流通过时形成的等离子体流场的丰富的结构和一些重要的影响因素,为研究其过程机制提供了依据。  相似文献   

15.
将等离子体对中性气体的作用模型化为彻体力矢量,求解带源项的Navier-Stokes方程,数值模拟了在NLF(1)-0213翼型上表面60%弦长处安装等离子体激励器对升力的控制效果.彻体力为净电荷在外加电场作用下的电场力.解拉普拉斯方程得到外加电场分布,等离子体中的净电荷分布由泊松方程给出.升力线计算结果与实验值吻合,激励器工作时,升力线向上平移,控制效果与襟翼类似.  相似文献   

16.
The main effects caused by the interplanetary magnetic field (IMF) are analyzed in cases of supersonic solar wind flow around magnetized planets (like Earth) and nonmagnetized (like Venus) planets. The IMF has a relatively weak strength in the solar wind but it is enhanced considerably in the so-called plasma depletion layer or magnetic barrier in the vicinity of the streamlined obstacle (magnetopause of a magnetized planet, or ionopause of a nonmagnetized planet). For magnetized planets, the magnetic barrier is a source of free magnetic energy for magnetic reconnection in cases of large magnetic shear at the magnetopause. For nonmagnetized planets, mass loading of the ionospheric particles is very important. The new created ions are accelerated by the electric field related to the IMF, and thus they gain energy from the solar wind plasma. These ions form the boundary layer within the magnetic barrier. This mass loading process affects considerably the profiles of the magnetic field and plasma parameters in the flow region.  相似文献   

17.
设计了斜孔式等离子体合成射流激励器,采用电参数测量和高速纹影技术研究了其放电特性及瞬态流场特性。实验表明:相较直孔式等离子体合成射流激励器,斜孔式等离子体合成射流激励器的射流流动表现出明显的附壁效应和非对称性,这有利于提高射流对流动分离的控制能力。同时,实验中还观察到了浮力对等离子体高温射流流场演化的影响,特别是在射流演化的末期,其诱导的垂向速度分量显著地改变了射流的最终运动方向。   相似文献   

18.
Recent analyses of spacecraft data, especially AMPTE/IRM data, provide a test of reconnection theory; an analysis for the signature of a local tangential stress balance in a one-dimensional time-stationary rotational discontinuity has left crucial questions unanswered. A key result is that the electron temperature profile inward through the magnetopause current sheet shows heating followed by cooling. Electrons must be one of the carriers of the current; hence this result reflects the sign of E · J in the frame of reference of the magnetopause current carriers. Since the current is directed from dawn to dusk, the inescapable conclusion is that the electric field must reverse within the current sheet. This is direct evidence of a load–dynamo combination; in that dynamo, energy is transferred from the solar wind plasma to the electromagnetic field. A dynamo is not included in the reconnection model which includes only the electrical load; therefore, we argue that the reconnection problem is improperly posed. A second compelling observation is a remarkable difference of the normal component of the plasma velocity between inbound and outbound crossings. For an inbound crossing (outward current meander) this component does reverse, but not quite as assumed in the reconnection model; on the other hand, for outbound crossings of the spacecraft (corresponding to erosion) there is no reversal at all. The normal component is approximately constant at 20 km s-1, anti-Sunward throughout. Since the typical motion of the magnetopause is 10 km s-1 this revealing result shows that solar wind plasma can go across the magnetopause, even onto closed field lines to feed the low latitude boundary layer. This is in stark contrast to the reconnection model where the plasma goes to open field lines. The interaction can be understood by appealing to Poynting's theorem, where E · J describes the net effect on or by the plasma. Time-dependent terms (even in the initial conditions) must be used so that it is possible to draw upon energy which has been stored locally in both electrical and magnetic forms. An extended discussion of observational results from ground-based, rocket, and satellite instruments indicate the impulsive nature of the solar wind–magnetospheric interaction. There is a lot of plasma involved in this interaction, over 1027 ions electrons-1 per second; the anti-Sunward flow takes place in the low latitude boundary layer. There is no flux catastrophe produced by this flow since the frozen-field theorem does not hold for plasma transfer across the magnetopause. The LLBL completely envelops the plasma sheet; the LLBL is the source of its plasma, not the plasma mantle as hypothesized in the reconnection model of the magnetotail. A number of serious errors have occurred in some articles in the literature on reconnection, and we list and discuss the most important of these. In the conclusion it is emphasized that the failure to provide a viable energy source, within the necessary spatial and temporal constraints, is responsible for the failure of reconnection model. This does not mean that the state of interconnection between the geomagnetic field and the interplanetary magnetic field can not change, but it does mean that the advocated process is not relevant to such changes. True reconnection requires that the electric field has a curl so that an electromotive force = E · dl = -dMdt exists through which energy can be interchanged with stored magnetic energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号