首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two particular examples are considered of astrophysical objects containing a highly conducting tenuous plasma with an excess magnetic energy supplied by an external source. The first example is the solar corona, whose magnetic field is continuously distorted by footpoint shuffling due to photospheric motions. The second case it an extragalactic jet extending from a galactic nucleus with an immersed magnetic field, and which is perturbed by variations in the pressure of the external medium. In both cases it is assumed that the system tends towards its lowest magnetic energy equilibrium via magnetic reconnection, thus providing a fast release of injected magnetic energy. Explicit relations between the characteristics of the external driver and the magnetic energy dissipation rate in these objects have been obtained. The relevance of this mechanism for heating the solar corona and maintaining radio emission from extragalactic jets is then. discussed by comparing these results with observational data.  相似文献   

2.
We present the results obtained through the various ISO extragalactic deep surveys. Although IRAS revealed the existence of galaxies forming stars at a rate of a few tens (LIRGs) or even hundreds (ULIRGs) solar masses in the local universe, ISO not only discovered that these galaxies were already in place at redshift one, but also that they are not the extreme objects that we once believed them to be. Instead they appear to play a dominant role in shaping present-day galaxies as reflected by their role in the cosmic history of star formation and in producing the cosmic infrared background detected by the COBE satellite in the far infrared to sub-millimeter range. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

3.
Because the supernova remnants (SNRs) in other galaxies are at well-defined distances and because in many cases the reddening within extragalactic samples is more uniform than is the case for the Galactic SNR sample, extragalactic SNRs are fundamental to improving our understanding of SNR evolution. Here methods for identifying SNRs are reviewed and the current status of observational research is explored. The data do not unambiguously support the simple Sedov picture of SNR expansion, although it may be that the data can be reconciled with this picture if sufficient variation in initial conditions are allowed.  相似文献   

4.
Recent results from observations of the southern sky objects are summarized. The unpulsed, persistent very high energy (VHE) emission from the gamma ray pulsars, the Crab and PSR1706-44, is discussed. A process of energetic electrons ejection may take place from a variety of other objects such as from X-ray binaries, similarly to the pulsars. Such an effect may be seen also in pair halos around extragalactic VHE gamma ray emitters, the observational study of which is still in a preliminary stage in the southern hemisphere.  相似文献   

5.
We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark–hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars are discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a?Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.  相似文献   

6.
The stellar Initial Mass Function (IMF) suggests that stars with sub-solar mass form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre–main-sequence (PMS) evolutionary phase, i.e., they have not started their lives on the main-sequence yet. The peculiar nature of these objects and the contamination of their samples by the fore- and background evolved populations of the Galactic disk impose demanding observational techniques, such as X-ray surveying and optical spectroscopy of large samples for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the metal-poor companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of the above techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope within the last five years yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of star-forming regions in these galaxies, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of the PMS stellar content of the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.  相似文献   

7.
Old-aged stellar distance indicators are present in all Galactic structures (halo, bulge, disk) and in galaxies of all Hubble types and, thus, are immensely powerful tools for understanding our Universe. Here we present a comprehensive review for three primary standard candles from Population II: (i) RR Lyrae type variables (RRL), (ii) type II Cepheid variables (T2C), and (iii) the tip of the red giant branch (TRGB). The discovery and use of these distance indicators is placed in historical context before describing their theoretical foundations and demonstrating their observational applications across multiple wavelengths. The methods used to establish the absolute scale for each standard candle is described with a discussion of the observational systematics. We conclude by looking forward to the suite of new observational facilities anticipated over the next decade; these have both a broader wavelength coverage and larger apertures than current facilities. We anticipate future advancements in our theoretical understanding and observational application of these stellar populations as they apply to the Galactic and extragalactic distance scale.  相似文献   

8.
Observations of H2 line emission in galactic and extragalactic environments obtained with the Infrared Space Observatory (ISO) are reviewed. The diagnostic capability of H2 observations is illustrated. We discuss what one has learned about such diverse astrophysical sources as photon-dominated regions, shocks, young stellar objects, planetary nebulae and starburst galaxies from ISO observations of H2 emission. In this context, we emphasise use of measured H2 line intensities to infer important physical quantities such as the gas temperature, gas density and radiation field and we discuss the different possible excitation mechanisms of H2. We also briefly consider future prospects for observation of H2 from space and from the ground. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

9.
The observed scaling relations imply that supermassive black holes (SMBH) and their host galaxies evolve together. Near-Eddington winds from the SMBH accretion discs explain many aspects of this connection. The wind Eddington factor \(\dot{m}\) should be in the range ~1–30. A factor \(\dot{m}\sim 1\) give black hole winds with velocities v~0.1c, observable in X-rays, just as seen in the most extreme ultrafast outflows (UFOs). Higher Eddington factors predict slower and less ionized winds, observable in the UV, as in BAL QSOs. In all cases the wind must shock against the host interstellar gas and it is plausible that these shocks should cool efficiently. There is detailed observational evidence for this in some UFOs. The wind sweeps up the interstellar gas into a thin shell and propels it outwards. For SMBH masses below a certain critical (Mσ) value, all these outflows eventually stall and fall back, as the Eddington thrust of the wind is too weak to drive the gas to large radii. But once the SMBH mass reaches the critical Mσ value the global character of the outflow changes completely. The wind shock is no longer efficiently cooled, and the resulting thermal expansion drives the interstellar gas far from the black hole, which is unlikely to grow significantly further. Simple estimates of the maximum stellar bulge mass M b allowed by self-limited star formation show that the SMBH mass is typically about 10?3 M b at this point, in line with observation. The expansion-driven outflow reaches speeds v out?1200 km?s?1 and drives rates \(\dot{M}_{\mathrm{out}}\sim 4000~\mathrm {M}_{\odot }\,\mathrm{yr}^{-1}\) in cool (molecular) gas, giving a typical outflow mechanical energy L mech?0.05L Edd, where L Edd is the Eddington luminosity of the central SMBH. This is again in line with observation. These massive outflows may be what makes galaxies become red and dead, and can have several other potentially observable effects. In particular they have the right properties to enrich the intergalactic gas with metals. Our current picture of SMBH-galaxy coevolution is still incomplete, as there is no predictive theory of how the hole accretes gas from its surroundings. Recent progress in understanding how large-scale discs of gas can partially cancel angular momentum and promote dynamical infall offers a possible way forward.  相似文献   

10.
采用将聚二甲基硅烷与聚氯乙烯共裂解合成制备了Si-C-O纤维先驱体聚合物,并对其进行了表征。表明反应体系中聚氯乙烯含量较高时,生成的先驱体聚合物既有聚碳硅烷的结构特征,又具有-CH=CH-共轭结构特征的-(SiCH3H-CH2)n(CH=CH)m-共聚物。先驱体聚合物经熔融纺丝及NO2不熔化处理,高温烧成制得低电阻率Si-C-O(电阻率小于10^0Ω.cm),而通过聚碳硅烷制得的SiC纤维电阻率为10^6Ω.cm。结果表明能够从聚二甲基硅烷与聚氯乙烯共裂解出发制备低电阻率Si-C-O纤维。  相似文献   

11.
In-situ spectral observations of power-line harmonic radiation (PLHR) are still quite rare and almost all the detailed characteristics have been derived from studies at Antarctic stations such as Siple and Halley, and their conjugates in North America. Because of the lack of more direct satellite evidence of PLHR and the difficulties in interpretation of morphological studies, such as those of Ariel 3 and 4, there is considerable controversy concerning the relative importance of PLHR and its contribution to wave-particle interactions (WPI) in the magnetosphere. The early Ariel 3 and 4 global surveys indicated that, in terms of true mean wave energy, there is no longitudinal localisation, the contribution of world-wide intense VLF emissions, associated with magnetic storms, being dominant. Also, the most intense wave emission, that of plasmaspheric hiss at ELF (< 1 kHz) exhibits little evidence of localisation. The PLHR phenomenon is most conspicuous by its persistence in quiet times (Kp ≤ 2+) at 45° < Λ < 55° over North America and its conjugate region, even though the less frequent strongest emissions, to which it gives rise in the summer, are located polewards at 3 < L < 5. In the northern winter, when spheric activity over both North America and its conjugate are low, there is a high occurrence of strong discrete emissions, which are more sharply localised than in the summer, on the NE industrial U.S.A. field line. The most recent Ariel 4 studies, particularly on the spheric wavefield over North America (using data from the Appleton Laboratory impulse counters) and on the character of the wavefield over the mainland and over the Atlantic immediately to the east (where the spheric contribution is similar) throw new light on the problem. It appears that the principal role of the PLHR may be to sustain duct structure and multihop propagation which is relatively much rarer over the Atlantic. Typical industrial PLHR consists of a series of narrow pulses at twice the mains frequency. It is suggested that these ‘artificial spherics’ may help to sustain the WPI and multihop duct structure. At L = 4, Yoshida et al. (1980) have shown that there is a strong, sharp maximum for WPIs originating in spherics, at f ? 3 kHz, in good agreement with Siple observations.  相似文献   

12.
In the first fifty years after Edwin Hubble announced a linear relationship between distances and redshifts of external galaxies, the accepted value of his constant dropped by (or the Universe expanded and aged by) a factor of 5 to 10. More recently, different groups, often using nearly the same data, have passionately defended distance scales that differ by about a factor of two. The sections of this review explore (1) the history of extragalactic distance scales, (2) the relationships between the Hubble constant, H 0, and other cosmological parameters, (3) types of distance indicators, (4) ways of measuring distances in practice, (5) values of H 0 reported recently on the basis of these methods, (6) the continuing discrepancies between the 'long' and 'short' distance scales, and (7) prospects for future convergence on a single, global value of H, so that we can all get back to doing other things. The units of the Hubble constant are km s-1 Mpc-1 (or reciprocal time), and no one now strongly favors any value outside the range 40–90 km s-1 Mpc-1 (time scales of 11–25 Gyr).  相似文献   

13.
Current observational data base on the motion of comets and asteroids is reviewed. Particular attention is paid to the absolute and relative abundances of different dynamical types of objects, and to the time intervals between their first and last observations. The latter quantity, ranging from two days to two milliennia for individual objects, is the dominant measure of the accuracy of the orbit determination. Distribution of the tracking times of comets (distinguished by dynamical age: new, long-period, Halley type, Jupiter family) and asteroids (distinguished by stability: Apollos, Amors, main-belt asteroids, outer librators, outer unstable objects) are reconstructed. The peculiar shapes of individual distributions can be explained by the complex mechanisms of discoveries, rediscoveries, orbit computations, follow-up observations and backward identifications. A comparison is also made with the dynamical data base on meteoroids, as regards the accuracy of their orbits.The cumulative tracking times (170000 yr for all 7600 objects with known orbits taken together) are compared with the lifetimes and occurrence rates of different events of evolutionary significance. Only in the case of short-period comets the evolution is rapid enough to render observable a variety of important changes, ranging from drastic transformations of orbits to disruption or total outgassing. For asteroids, only minor cratering collisions which do not result in detectable changes of their orbits are covered by the whole observational history.Expected future improvements of observing and data-handling techniques are outlined. With these in view, the size and character of the data to become available by the end of this century are predicted. Dynamical types of objects, which are currently known in only one or a few examples, are pointed out. Apparently, other types of rare occurrence and short survival time still escape detection. A list of easiest targets of short-duration spacecraft missions is presented.The deficiencies of current statistics due to observational selection; the broad variety of regimes of motion occupied by widely differing proportional representations of the known objects; and demands for suitable targets of future spacecraft missions make it highly desirable to maintain the present rapid rate of augmentation of the data base for the years to come.Recent passages of two comets — 1983d IRAS-Araki-Alcock and 1983e Sugano-Saigusa-Fujikawa — near the Earth indicate that both the collision rate given in Table VIII and the contribution of long-period comets to it may have been slightly underestimated. The appropriate adjustment of the log-t values by less than — 0.10 has no effect of the general conclusions, however.The success of the orbiting observatory IRAS in detecting faint interplanetary objects lends better promises for the increase of the number of known objects (in particular comets) than anticipated in Section 6 and estimated in Table IX. Obviously, the outcome will largely depend on the implementation, time coverage and degree of exploitation of similar projects in the near future.  相似文献   

14.
Let us suppose that it is possible observationally to determine the number ratio of WR to O stars in a starburst galaxy (cf. e. g. Vacca &; Conti 1992) and that one can also have some information on the way the different WR subtypes are distributed (number ratios as WN/WR, WNL/WR etc ...), the question is, what can we deduce from these values on the burst of star formation which gave birth to these WR stars? Is it possible for instance to constrain the age of the burst (i.e. the time elapsed since the beginning of the burst of star formation), its intensity (i.e. the ratio of the star formation rate during the burst to that before the burst) or the metallicity of the cloud from which the stars formed? We present here models of starbursts based on the most recent models for single stars computed by the Geneva group and show that the study of the WR population in a starburst provides very useful insights on the age of the burst and on the metallicity of the star forming zone.  相似文献   

15.
The Earth’s magnetotail is an extremely complex system which—energized by the solar wind—displays many phenomena, and Alfvén waves are essential to its dynamics. While Alfvén waves were first predicted in the early 1940’s and ample observations were later made with rockets and low-altitude satellites, observational evidence of Alfvén waves in different regions of the extended magnetotail has been sparse until the beginning of the new millennium. Here I provide a phenomenological overview of Alfvén waves in the magnetotail organized by region—plasmasphere, central plasma sheet, plasma sheet boundary layer, tail lobes, and reconnection region—with an emphasis on spacecraft observations reported in the new millennium that have advanced our understanding concerning the roles of Alfvén waves in the dynamics of the magnetotail. A brief discussion of the coupling of magnetotail Alfvén waves and the low-altitude auroral zone is also included.  相似文献   

16.
The visible extragalactic background (though as yet undetected) is insufficient to explain the abundance of heavy elements in galaxies: either there should be some diffuse extragalactic light in the near infrared (from 1 to 10 m) and/or in the far infrared (100 m) if dust has reprocessed the star light. We propose a new space mission to be dedicated to the search and mapping of primordial stellar light from the visible to the mid-infrared (20 m). In this spectrum range, detectors have reached such a sensitivity that the mission should aim at being (source) photon noise limited, and not any longer background photon noise limited. For that purpose, a small passively cooled telescope with large format CCDs and CIDs could be sent beyond the zodiacal dust cloud (which is absent beyond a solar distance of about 3 AU). In that case, the only remaining foregrounds before reaching the extragalactic background, is due to the Milky Way integrated emission from stars and the diffuse galactic light due to scattering and emission by interstellar dust, which are all unavoidable. Maps of the extragalactic light could be obtained at the arcminute resolution with high signal to noise ratio. This mission is the next logical step after IRAS, COBE and ISO for the study of extragalactic IR backgrounds. It has been proposed as a possible medium-sized mission for the post-horizon 2000 ESA program that could be a piggy back of a planetary mission.  相似文献   

17.
It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and γ-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zel’dovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of μG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.  相似文献   

18.
19.
At energies above the bulk solar wind and pick-up ion cutoff, observations reveal an interplanetary suprathermal ion population extending to ~1?MeV/nucleon and even higher energies. These suprathermal ions are found under a wide variety of conditions including periods when there are no obvious nearby accelerating shocks. We review the observational properties of these ions in quiet solar wind periods near 1?AU, including transient Corotating Interaction Region (CIR) events, and other, quieter periods in between transient enhancements. The particle energy spectra are power laws close to E ?1.5 in the range above the solar wind, rolling over at energies of a few hundred keV/nucleon to a few MeV/nucleon. Although the C/O and Fe/O ratios of the tails is close to that of the solar wind, pickup ions and 3He found in the tails indicate sources distinct from the solar wind. We briefly review several mechanisms that have been proposed to explain these ions.  相似文献   

20.
Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called “prominence seismology”. There are two types of oscillatory phenomena observed in prominences; “small-amplitude oscillations” (2–3 km?s?1), which are quite common, and “large-amplitude oscillations” (>20 km?s?1) for which observations are scarce. Large-amplitude oscillations have been found as “winking filament” in Hα as well as motion in the plane-of-sky in Hα, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fast-mode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号