首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
一、前言蓄电瓶在航空,航海、农村、工厂、矿山、电讯等各方面都有广泛的应用。由于蓄电瓶和整流器的内阻都很低,一般可用r R=(0.12~0.2)E/I_(ch)来估算,其中r为蓄电瓶的内阻,R为整流器的内阻,E为蓄电瓶的电压,I_(ch)为蓄电瓶最大充电电流。因此,使用市电整流后直接对蓄电瓶充电将会使充电电流在市电电压较低时太小、致使充电时间过长,充电不足。在市电电压较高时充电电流又太大,超过了电瓶充电的最大允许值,从而使电瓶损坏。目前,在我国大量使用的老式充电机有二种类型:一类是市电整流后用大功率限流电阻限制电瓶的  相似文献   

2.
通过对P/N4059飞机电瓶在维护使用中存在问题原因的分析,强调电瓶维护必须严格按照电瓶维修工艺规范的要求及掌握正确的维护使用方法,以提高飞机电瓶的使用可靠性。  相似文献   

3.
碱性电瓶在飞机上起着极其重要的作用。本文从碱性电瓶原理和充电特性曲线入手,对飞机碱性电瓶的充电方法及充电终止控制方法进行了探讨。 飞机碱性电瓶是指镍-镉电瓶,在飞 机上起着极其重要的作用。在主电源失效后,电瓶对重要的飞机系统提供应急电源,保证飞机就近着陆,它还作为交流系统的控制和保护以及启动APU的备用电源,因此飞机电瓶是否正常工作,关系着飞行安全。 镍-镉电瓶具有效率高、寿命长、能量密度大、体积小、重量轻、结构紧凑、工作电压平稳、能大电流放电等特点。碱性电瓶原理 飞机碱性电瓶(镍-镉电瓶)的正极材…  相似文献   

4.
为了对G-16EP型电瓶进行维护和保养,根据电瓶厂家规定和适航规范,总结了该型电瓶的充电和容量测试(放电)方法,指出了影响电瓶寿命的主要因素,为该型号电瓶的维护提供了参考。  相似文献   

5.
应用电瓶最佳受电原理,对常用飞机碱性电瓶的充电方式进行了分析和比较,提出了脉冲恒流二阶段充电法是电瓶的最佳充电方法之一的设想,其可行性已被试验证实。利用该充电方法,研制成了飞机碱性电瓶专用充电器.实验结果表明该充电方法能大大提高电瓶的充电效率,延长电瓶的使用寿命。  相似文献   

6.
碱性电瓶在飞机上起着极其重要的作用。本文从碱性电瓶原理和充电特性曲线入手,对飞机碱性电瓶的充电方法及充电终止控制方法进行了探讨。  相似文献   

7.
为实现航空电瓶的科学维护,对电瓶充放电分析仪的电压采集方式进行了改进,研制了一种新型航空电瓶测试接头,有效提高了测试的便捷性和仪器的兼容性,为开展电瓶维护工作提供了便利。  相似文献   

8.
对中国民航飞行学院使用的主流阀控式铅酸电瓶RG24-15的故障进行统计,分析该型铅酸电瓶失效的原因,并对实际工作中的维护方式提出可行的改进建议。统计数据论证了改进维护方式对阀控式铅酸电瓶使用寿命的影响,为通航领域机载电瓶的日常维护和延寿提供参考。  相似文献   

9.
简要介绍波音787飞机锂电池电瓶的基本情况、维修方案,并对锂电池电瓶的检测值与手册阈值进行对比分析,最后针对电瓶的定期维护控制提出建议,以降低维护成本。  相似文献   

10.
以镍镉电瓶装机应用合理化为出发点,首先解析了电瓶充放电原理、过充电原因和电瓶记忆效应,并以此为依据,科学分析影响制约电瓶装机时限的因素,以实际使用数据为支持,科学延长镍镉电瓶装机时间,提高使用效率。  相似文献   

11.
12.
The following topics are discussed: new batteries for old airplanes; new charge controls for lengthening battery life; fast methods for batteries charging; AC conductance measurement based battery testing; pulse power; bipolar lead-acid batteries vs supercapacitors; Ni electrode cells for spacecraft; worn-out battery disposal; recycling technology; vehicle batteries cost; high energy content batteries; and energy storage for electric utilities  相似文献   

13.
Valve regulated lead acid (VRLA) batteries provide electrical performance that is virtually identical to sintered plate nickel-cadmium battery systems. In addition, the VRLA batteries offer the user a no-maintenance battery and other enhanced features that make this a very desirable battery for aircraft applications. In field trials, where VRLA batteries were substituted for nickel-cadmium batteries, the VRLA provided the user with a high reliability turbine engine starting battery under a wide variety of climatic conditions  相似文献   

14.
从目前小型二次电池生产和应用的现状出发,结合条形码管理的实际特点,介绍了一种新型的电池条形码综合管理系统.系统通过在电池生产过程中引入条形码管理技术,便于电池生产厂家控制生产过程中电池质量、电池Pack厂在组装电池组时提取过程数据及电池流入市场后问题电池的追踪.详细介绍了系统的软硬件结构设计及系统特点,并对系统发展提出展望.  相似文献   

15.
Industrial battery market segments generally fall into two major categories--traction batteries, also called motive power batteries; and stationary batteries, also referred to as standby power batteries. The major industrial battery subcategories are discussed. Industrial trucks and rail and mine vehicles represent two major subcategories of motive power batteries. Industrial trucks include forklifts, automated guided vehicles (AGVs), various types of towing vehicles, floor cleaning equipment and so forth. Battery-powered rail and mine vehicles are used in mines where gas is present that could be ignited by spark ignition engines. Locomotive starting batteries and railcar emergency power batteries are also included in the second subcategory. The distinction is beginning to blur between valve-regulated industrial batteries and golf cart or marine batteries. Both industrial and SLI(starting/lighting/ignition)-derivative batteries are competing for markets in the future. The future trends in industrial battery production in Japan, USA and Europe are discussed  相似文献   

16.
COTS batteries are relatively inexpensive, readily accessible, and extremely versatile. These attributes allow the military to save time and money during the research and development stages. Of these COTS batteries, a 9-Volt (9 V) lithium/manganese dioxide battery is the subject of this paper. This 9 V battery has the ability to provide a low magnetic signature, which is very important to the Navy for many applications, Also, it is Underwriters Laboratories (UL) listed at the unit level; however, these UL tests cannot be directly related to the safety of these 9 V batteries when they are combined in various series and parallel configurations. Naval Surface Warfare Center (NSWC) Carderock was tasked to rate the safety of several such specialized battery packs. It was found that packs consisting of two 9 V batteries in parallel were relatively safe, experiencing no violent behavior. Battery packs with six 9 Vs in parallel vented and deformed the 9 V batteries, but no smoke or flames were noticed. A battery pack with thirty 9 V batteries, 2 in series with 15 legs, experienced venting, smoke, and flames under certain circumstances, After testing, the six and thirty 9 V packs were required to include the addition of various safety devices  相似文献   

17.
Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour  相似文献   

18.
The Hubble Space Telescope was deployed from the Space Shuttle Discovery into a 380-mile high Earth orbit on April 25, 1990. It subsequently made outstanding astronomical discoveries with its 8-foot (2.4-meter) telescope and other scientific instruments. Critical to the successful observations was continuous availability of power from its solar arrays during sunlit periods, and from nickel-hydrogen batteries when the satellite was in the Earth's shadow. The adopted nickel-hydrogen batteries were carefully selected and tested to confirm their depth-of-discharge and operating temperature that delivered the longest life in charge/discharge cycling service. These batteries had a design life of 7 years. At 12 years after launch the Hubble batteries have delivered more charge/discharge cycles than any other batteries in low-Earth orbit. However, the Hubble batteries have been subjected to many unexpected stresses, and peculiar reductions in battery capacity have been observed. Battery replacement requires a costly trip to the Hubble Space Telescope by astronauts, so the remaining useful life of the batteries must be predicted. Already in four servicing missions, astronauts have replaced or modified optics, solar arrays, a power control unit, and various science packages. A fifth servicing mission is scheduled in 2004. This paper discusses battery charging hardware and software controls, history of battery events in Hubble, cell performance model and spare battery tests, and capacity walkdown.  相似文献   

19.
Extensive research has been conducted in the design and manufacture of very long life sealed maintenance free nickel-cadmium aircraft batteries. This study presents data on a 100% depth of discharge (DOD) life test performed on a nominal capacity 42-Ah battery. The purpose of this study is to validate design concepts, determine the life characteristics of the newly designed sealed Ni-Cd batteries, and develop baseline information on failure rates and mechanisms. The data from this experiment can be used to compare depth of discharge versus battery life with similar tests such as the lower DOD experiments performed on spacecraft batteries. This information is important in the ongoing development of long life batteries and in developing failure models for life prediction  相似文献   

20.
The capability of lead-acid batteries for supplying very high power for a short time is explored. The application of such a battery for accelerating a hypersonic plane is used to illustrate the requirements. A technique for analyzing batteries and controlling voltage for pulse loads is described. Evaluation of lead-acid batteries in production and voltage regulation by switching batteries in and out are covered. Alternatives to batteries, including superconducting magnetic energy storage, are discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号