首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important aspect in satellite optical communication is to obtain minimum bit error rate (BER) using minimum power. This aim can be achieved with very small transmitter beam divergence angles. The disadvantages of too narrow divergence angle is that the transmitter beam may sometimes miss the receiver satellite, due to pointing vibrations. A mathematical model of communication and tracking systems that optimize the BER as function of the transmitter gain is derived  相似文献   

2.
空间激光通信现状、发展趋势及关键技术分析   总被引:4,自引:0,他引:4  
针对目前空间激光通信的背景需求,介绍了国内外星、空、地、海等平台间的空间激光通信研究与试验现状。通过对空间激光通信现状的分析,并结合科研实践,归纳出空间激光通信的高速率、网络化、多用途、一体化、多谱段5个未来发展趋势。在此基础上,从空间激光通信系统的光学结构、通信收发以及环境影响等方面,着重分析了高质量光学系统设计、高精度捕获对准跟踪、大气信道影响补偿、高速率高功率发射、高灵敏度低误码探测、一对多通信网络、平台振动与姿态补偿、器件部件空间适应性8项关键技术,并提出相关技术的解决方法和途径,进而给出须进一步深入研究的方向,展示了空间激光通信良好的应用前景。  相似文献   

3.
随着空间应用需求的日益增大,深空探测已成为现实,而月球显然是人类走向深空的首选目标。发射月球探测器通常分3个阶段,其运动状态分别对应3种不同类型的轨道:近地停泊轨道、地月转移轨道和绕月轨道。月球是1个慢自转天体且无大气,就轨道解而言这些因素导致环月卫星的运动与地球卫星有所差别。本文针对月球探测任务的特点,从月球与地球的差别入手,在仔细分析月球卫星的受力状况前提下,着重阐述月球探测器在环月段精密定轨的方法原理和具体实现过程。  相似文献   

4.
黄海风  梁甸农 《航空学报》2007,28(5):1168-1174
 分布式卫星干涉合成孔径雷达(InSAR)编队构形设计是系统总体设计的关键问题。从系统测高性能优化角度出发,提出分布式InSAR编队优化设计一般方法,将其概括为求解一个优化问题,以主星带辅星群体制分布式InSAR为例建立目标函数,针对其星载双站、斜视、空间基线等特点建立测高精度与辅星轨道根数的关系,基于近似的相对运动数学模型对该优化问题进行简化,并采用遗传算法求解。在此基础上,对多颗卫星组成编队以提高系统测高性能提出了一种多星编队设计方法。仿真分析表明,经优化得到的编队测高性能要优于干涉车轮和钟摆编队,该结果验证了优化设计方法的有效性和正确性。  相似文献   

5.
自适应波束形成抗干扰性能受先验信息、通道幅相误差等因素影响较大,在工程应用中实现复杂,鲁棒性较差。针对这一问题,提出了一种卫星导航接收机固定多波束抗干扰方法,该方法将信号空间分为多个子空间,通过最优分配策略选取多个子空间分别实现固定波束指向,并相应地在每个波束后配置独立的卫星捕获跟踪通道组,然后依据最高信噪比准则在所有的子空间中优选卫星进行定位解算。该方法无需先验信息辅助,在抑制干扰信号的同时对卫星信号形成接收增益,在存在工程误差的实际条件下可达到与典型自适应波束形成算法相当的抗干扰性能,且具有鲁棒性强、更易工程实现等优点。最后,通过计算机仿真验证了该方法的有效性。  相似文献   

6.
7.
航空移动卫星系统(AMSS)空间段采用单一的GEO轨道卫星,未来将有MEO和LEO轨道卫星加入运行,仍然不排斥GEO轨道卫星的使用。全球导航卫星系统(GNSS)空间段采用MEO轨道卫星,未来将仍然以MEO为主,可能有HEO轨道卫星加入运行。21世纪的空间段将为不同轨道卫星的多星座组合,采用一星多用、星座共用,形成多功能卫星和多功能星座。和平时期卫星资源的国际民间共建共营共享将更为普遍,要有全球观点,国内各行各业要有全局观点,对监测和增强系统统一筹建共用系统,防止分散投资、重复建设  相似文献   

8.
The forthcoming 10 cm range tracking accuracy capability holds much promise in connection with a number of Earth and ocean dynamics investigations. These include a set of earthquake-related studies of fault motions and the Earth's tidal, polar and rotational motions, as well as studies of the gravity field and the sea surface topography which should furnish basic information about mass and heat flow in the oceans. The state of the orbit analysis art is presently at about the 10 m level, or about two orders of magnitude away from the 10 cm range accuracy capability expected in the next couple of years or so. The realization of a 10 cm orbit analysis capability awaits the solution of four kinds of problems, namely, those involving orbit determination and the lack of sufficient knowledge of tracking system biases, the gravity field, and tracking station locations. The Geopause satellite system concept offers promising approaches in connection with all of these areas. A typical Geopause satellite orbit has a 14 hour period, a mean height of about 4.6 Earth radii, and is nearly circular, polar, and normal to the ecliptic. At this height only a relatively few gravity terms have uncertainties corresponding to orbital perturbations above the decimeter level. The orbit s, in this sense, at the geopotential boundary, i.e., the geopause. The few remaining environmental quantities which may be significant can be determined by means of orbit analyses and accelerometers. The Geopause satellite system also provides the tracking geometery and coverage needed for determining the orbit, the tracking system biases and the station locations. Studies indicate that the Geopause satellite, tracked with a 2 cm ranging system from nine NASA affiliated sites, can yield decimeter station location accuracies. Five or more fundamental stations well distributed in longitude can view Geopause over the North Pole. This means not only that redundant data are available for determining tracking system biases, but also that both components of the polar motion can be observed frequently. When tracking Geopause, the NASA sites become a two-hemisphere configuration which is ideal for a number of Earth physics applications such as the observation of the polar motion with a time resolution of a fraction of a day. Geopause also provides the basic capability for satellite-to-satellite tracking of drag-free satellites for mapping the gravity field and altimeter satellites for surveying the sea surface topography. Geopause tracking a coplanar, drag-free satellite for two months to 0.03 mm per second accuracy can yield the geoid over the entire Earth to decimeter accuracy with 2.5° spatial resolution. Two Geopause satellites tracking a coplanar altimeter satellite can then yield ocean surface heights above the geoid with 7° spatial resolution every two weeks. These data will furnish basic boundary condition information about mass and heat flows in the oceans which are important in shaping weather and climate.  相似文献   

9.
The theory of operation, practical applications, and technical performance of a Global Positioning System (GPS) receiver designed for urban area use are presented. The receiver tracks as many as eight satellites, or all visible satellites, and uses the signals of the four best satellites to ascertain its location. If visibility of one satellite is blocked, one of the additional satellites can be used to provide continuous navigation. Component-level system design choices are shown to support superior automotive vehicle location performance, including optimum mobile communication with satellites and ground-based relays  相似文献   

10.
《中国航空学报》2016,(5):1335-1344
In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centime-ters. The antenna PCO and PCV error characteristics and the principles influencing orbit determi-nation are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE) and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR) and satellite laser ranging (SLR) measurements. For GRACE satellites, the average root mean square (RMS) of KBR resid-uals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR resid-uals improved from 4.95 cm to 4.06 cm.  相似文献   

11.
In the ASTRO-DABS concept for surveillance and data link, aircraft are interrogated by one of three geostationary transmitter satellites, each covering 1/3 of the contiguous United States. Interrogation scheduling involves a roll call such that aircraft responses to receiving satellites do not overlap (garble). A simple approach is developed which utilizes range ordering of aircraft with respect to transmitter satellites, but is independent of receiver satellite locations and aircraft distribution. Bounds on roll-call duration are established, showing that interrogation of 80 000 aircraft requires between 4.0 and 6.4 seconds with the ASTRO-DABS transmission format. If aircraft distribution is regionally concentrated (i.e., clustered), the roll-call duration nears the lower bound, since fewer gaps between interrogations are needed to preclude garbling.  相似文献   

12.
Quick position determination using 1 or 2 LEO satellites   总被引:1,自引:0,他引:1  
We describe an approach for a medium accuracy position determination of a user terminal (UT) on the Earth surface, using one or two low Earth orbit (LEO) satellites. The positioning approach is intended to meet the requirements of a worldwide personal communications system using LEO satellites. The basic two requirements are: (1) immediate positioning, and (2) horizontal position accuracy of the order of 10 km. Those requirements stem from the need of the system to know the user's approximate location before it connects his call. The approach makes use of the two-way communication with the UT, which can receive, transmit, and make its own measurements. Delay and Doppler measurements are used in order to enable instantaneous positioning with one satellite, and in order to achieve unambiguous positioning with two satellites. A simplified Globalstar satellite constellation and the expected Globalstar delay and frequency measurement accuracy are used to demonstrate the concept and to evaluate its performances  相似文献   

13.
A possible classification of satellites can be related to their capability to provide or not provide real-time services. Nonreal-time systems store the information, and forward it to destination later, usually by means of low Earth orbit (LEO) satellites. Nowadays the main application of these systems is small data exchange to/from remote sites where no other communication infrastructure is available, hence, covering a niche market. Low on-board memory storage capability and, moreover, low bit rate due to little bandwidth allocated for these systems do not allow us to collect and forward a considerable volume of data in the short visibility window of the satellite passage. New applications and services can be conceived through the deployment of new systems able to overcome the above-described limitations, while existing applications can be provided more cost-effectively. These aspects are addressed together with an experimental interactive system which allows huge data collection in W-band and for forwarding to the Internet.  相似文献   

14.
潘成胜  行贵轩  戚耀文  杨力 《航空学报》2020,41(4):323546-323546
依据空间信息网络(SIN)高动态性的特点,并考虑卫星工作的多状态特性,兼顾星间通信时延和拓扑抗毁性的要求,研究了多状态下空间信息网络拓扑生成及动态优化的问题。根据卫星星座的周期性,建立了一种卫星网络的拓扑周期表。综合卫星的可视性和连接度等约束条件,以网络平均和最大时延作为通信性能的优化目标,建立拓扑的多目标优化模型。提出一种改进的多目标模拟退火(IMOSA)算法,求解全局时延最优的卫星拓扑,并在考虑多状态情况下对链路进行优化,以满足网络高动态性。最后基于具有66颗低轨(LEO)的铱星星座进行仿真,研究表明:针对多状态条件下的铱星星座,该算法最大化减小了通信时延,得到抗毁性良好的拓扑结构,通信性能较之原有静态拓扑明显得到改善。  相似文献   

15.
This correspondence describes a novel electronically tracking antenna system for satellite reception in the VHF range. The "hedgehog" antenna consists of several antennas directed in different directions to cover the whole sky. An electronic switch, controlled by the satellite receiver, connects the receiver to the antenna from which the desired satellite signal is obtained. This system is especially suitable for unmanned reliable receiving stations if an antenna gain of the order of 10 dB is enough.  相似文献   

16.
DOA estimation for attitude determination on communication satellites   总被引:1,自引:1,他引:0  
In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.  相似文献   

17.
This paper discusses the concept, design, and design verification of the White Sands Range and Range-Rate System. Development of the system has been completed only through the design phase. The system is designed to meet requirements for high-accuracy midcourse tracking under severe target dynamics at the White Sands Missile Range. It is a multistatic Doppler and range tracker which operates at X band and incorporates transmitter, transponder, receiver, and baseline subsystems. The transmitter includes specially designed digital circuitry to synthesize test signals for target simulation during checkout of the system. The transponder signal is processed by a receiver which has been established theoretically to be the optimum realizable processor of continuous tracking data. The receiver incorporates specially designed carrier acquisition circuitry and digital VCO, and directly provides digital Doppler and tone phase data to facilitate real-time processing. The system utilizes data from other tracking systems at the Range for spatial acquisition, for aiding carrier acquisition in the receiver, and for resolving range ambiguities.  相似文献   

18.
针对单星仅测角对目标跟踪误差较大和不良测量条件下跟踪精度下降的问题,提出利用编队卫星对非合作目标进行联合跟踪的方法。采用考虑地球非球形J2引力摄动的轨道动力学模型,建立多视线测量模型,融合编队卫星对目标的观测数据。然后,基于新息设计增益调节矩阵提高滤波器在测量故障条件下的鲁棒性。最后,建立仿真模型进行验证。仿真结果表明,相比单星跟踪,该方法的位置误差和速度误差分别减少了27.06%和26.96%。在系统存在异常量测时,相比常规滤波,该方法也具有更高的精确性和更好的鲁棒性。  相似文献   

19.
A method to improve satellite tracking accuracy is presented and discussed theoretically and experimentally in terms of two parts: correction for errors of the tracking system and correction of satellite orbit predictions. In the first part, it is concluded that the pointing error of the tracking system can be determined accurately using data from stellar observations, so that correction is possible with an accuracy of about 0.001°. In the second part, it is shown that apparent errors of satellite orbital elements can be deduced from the optical observation of one orbit, and one can track the satellite after the correction with high accuracy for several subsequent orbits. The accuracy is 0.1-0.2 mrad or better for satellites at 1000 km altitude when given orbit prediction accuracy is approximately 1°.  相似文献   

20.
A unique delay?lock tracking system is described. The system includes an interrogator and a repeater operating on the same radio frequency, with a pulse repetition rate which is related to the distance. Single radio frequency operation allows utilization of a superregenerative radio frequency stage, which serves as both the receiver and the transmitter of the interrogator unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号