首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPEX, and STEREO spacecraft and extend from ~0.1 to ~500–700?MeV. All of the proton spectra exhibit spectral breaks at energies ranging from ~2 to ~46?MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of ?3.18 at >40?MeV/nuc. In the energy range 45 to 80?MeV/nucleon about ~50?% of GLE events have properties in common with impulsive 3He-rich SEP events, including enrichments in Ne/O, Fe/O, 22Ne/20Ne, and elevated mean charge states of Fe. These 3He-rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of 〈Q Fe〉≈+20 if the acceleration starts at ~1.24–1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.  相似文献   

2.
The Low-Energy Telescope (LET) is one of four sensors that make up the Solar Energetic Particle (SEP) instrument of the IMPACT investigation for NASA’s STEREO mission. The LET is designed to measure the elemental composition, energy spectra, angular distributions, and arrival times of H to Ni ions over the energy range from ~3 to ~30 MeV/nucleon. It will also identify the rare isotope 3He and trans-iron nuclei with 30≤Z≤83. The SEP measurements from the two STEREO spacecraft will be combined with data from ACE and other 1-AU spacecraft to provide multipoint investigations of the energetic particles that result from interplanetary shocks driven by coronal mass ejections (CMEs) and from solar flare events. The multipoint in situ observations of SEPs and solar-wind plasma will complement STEREO images of CMEs in order to investigate their role in space weather. Each LET instrument includes a sensor system made up of an array of 14 solid-state detectors composed of 54 segments that are individually analyzed by custom Pulse Height Analysis System Integrated Circuits (PHASICs). The signals from four PHASIC chips in each LET are used by a Minimal Instruction Set Computer (MISC) to provide onboard particle identification of a dozen species in ~12 energy intervals at event rates of ~1,000 events/sec. An additional control unit, called SEP Central, gathers data from the four SEP sensors, controls the SEP bias supply, and manages the interfaces to the sensors and the SEP interface to the Instrument Data Processing Unit (IDPU). This article outlines the scientific objectives that LET will address, describes the design and operation of LET and the SEP Central electronics, and discusses the data products that will result.  相似文献   

3.
We present a brief introduction to the essential physics of coronal mass ejections as well as a review of theory and models of CME initiation, solar energetic particle (SEP) acceleration, and shock propagation. A brief review of the history of CME models demonstrates steady progress toward an understanding of CME initiation, but it is clear that the question of what initiates CMEs has still not been solved. For illustration, we focus on the flux cancellation model and the breakout model. We contrast the similarities and differences between these models, and we examine how their essential features compare with observations. We review the generation of shocks by CMEs. We also outline the theoretical ideas behind the origin of a gradual SEP event at the evolving CME-driven coronal/interplanetary shock and the origin of “impulsive” SEP events at flare sites of magnetic reconnection below CMEs. We argue that future developments in models require focused study of “campaign events” to best utilize the wealth of available CME and SEP observations.  相似文献   

4.
Data from ACE and GOES have been used to measure Solar Energetic Particle (SEP) fluence spectra for H, He, O, and Fe, over the period from October 1997 to December 2005. The measurements were made by four instruments on ACE and the EPS sensor on three GOES satellites and extend in energy from ∼0.1 MeV/nuc to ∼100 MeV/nuc. Fluence spectra for each species were fit by conventional forms and used to investigate how the intensities, composition, and spectral shapes vary from year to year.  相似文献   

5.
The Two Sources of Solar Energetic Particles   总被引:2,自引:0,他引:2  
Evidence for two different physical mechanisms for acceleration of solar energetic particles (SEPs) arose 50 years ago with radio observations of type III bursts, produced by outward streaming electrons, and type II bursts from coronal and interplanetary shock waves. Since that time we have found that the former are related to “impulsive” SEP events from impulsive flares or jets. Here, resonant stochastic acceleration, related to magnetic reconnection involving open field lines, produces not only electrons but 1000-fold enhancements of 3He/4He and of (Z>50)/O. Alternatively, in “gradual” SEP events, shock waves, driven out from the Sun by coronal mass ejections (CMEs), more democratically sample ion abundances that are even used to measure the coronal abundances of the elements. Gradual events produce by far the highest SEP intensities near Earth. Sometimes residual impulsive suprathermal ions contribute to the seed population for shock acceleration, complicating the abundance picture, but this process has now been modeled theoretically. Initially, impulsive events define a point source on the Sun, selectively filling few magnetic flux tubes, while gradual events show extensive acceleration that can fill half of the inner heliosphere, beginning when the shock reaches ~2 solar radii. Shock acceleration occurs as ions are scattered back and forth across the shock by resonant Alfvén waves amplified by the accelerated protons themselves as they stream away. These waves also can produce a streaming-limited maximum SEP intensity and plateau region upstream of the shock. Behind the shock lies the large expanse of the “reservoir”, a spatially extensive trapped volume of uniform SEP intensities with invariant energy-spectral shapes where overall intensities decrease with time as the enclosing “magnetic bottle” expands adiabatically. These reservoirs now explain the slow intensity decrease that defines gradual events and was once erroneously attributed solely to slow outward diffusion of the particles. At times the reservoir from one event can contribute its abundances and even its spectra as a seed population for acceleration by a second CME-driven shock wave. Confinement of particles to magnetic flux tubes that thread their source early in events is balanced at late times by slow velocity-dependent migration through a tangled network produced by field-line random walk that is probed by SEPs from both impulsive and gradual events and even by anomalous cosmic rays from the outer heliosphere. As a practical consequence, high-energy protons from gradual SEP events can be a significant radiation hazard to astronauts and equipment in space and to the passengers of high-altitude aircraft flying polar routes.  相似文献   

6.
Error Measures for Normal Random Variables   总被引:1,自引:0,他引:1  
Four commonly used measures of error are the root mean square error (RMSE), the geometric mean error (GME), the mean radial error (MRE), and the circular or spherical error probable (CEP, SEP). Exact or approximate closed form expressions are given. for each for zero mean, normal random variables in two and three dimensions. Numerical comparison of the measures suggests the relationship GME ? SEP(CEP) < MRE ? RMSE.  相似文献   

7.
Energetic particles constitute an important component of the heliospheric plasma environment. They range from solar energetic particles in the inner heliosphere to the anomalous cosmic rays accelerated at the interface of the heliosphere with the local interstellar medium. Although stochastic acceleration by fluctuating electric fields and processes associated with magnetic reconnection may account for some of the particle populations, the majority are accelerated by the variety of shock waves present in the solar wind. This review focuses on “gradual” solar energetic particle (SEP) events including their energetic storm particle (ESP) phase, which is observed if and when an associated shock wave passes Earth. Gradual SEP events are the intense long-duration events responsible for most space weather disturbances of Earth’s magnetosphere and upper atmosphere. The major characteristics of gradual SEP events are first described including their association with shocks and coronal mass ejections (CMEs), their ion composition, and their energy spectra. In the context of acceleration mechanisms in general, the acceleration mechanism responsible for SEP events, diffusive shock acceleration, is then described in some detail including its predictions for a planar stationary shock, shock modification by the energetic particles, and wave excitation by the accelerating ions. Finally, some complexities of shock acceleration are addressed, which affect the predictive ability of the theory. These include the role of temporal and spatial variations, the distinction between the plasma and wave compression ratios at the shock, the injection of thermal plasma at the shock into the process of shock acceleration, and the nonlinear evolution of ion-excited waves in the vicinity of the shock.  相似文献   

8.
We review recent advances in determining the elemental, charge-state, and isotopic composition of 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations.The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however, are found to be roughly energy independent in the 1 to 20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion.Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He+ along with heavy ions with typically coronal ionization states. High-resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP 22Ne/20Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of 3He-rich, heavy-ion rich and carbon-poor SEP events, along with direct measurements of the ionization states of SEPs provide essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.It is concluded that SEP acceleration is a two-step process, beginning with plasma-wave heating of the ambient plasma in the lower corona, which may include pockets of cold material, and followed by acceleration to the observed energies by either flare-generated coronal shocks or Fermi-type processes in the corona. Interplanetary propagation as well as acceleration by interplanetary propagating shock will often further modify the composition of SEP events, especially at lower energies.  相似文献   

9.
R. P. Lin 《Space Science Reviews》2006,124(1-4):233-248
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies, but it appears that a different acceleration process, one associated with fast Coronal Mass Ejections (CMEs) is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. The observations of the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun strongly imply that the acceleration is closely related to the magnetic reconnection that releases the energy in solar flares. Here preliminary comparisons of the RHESSI observations with observations of both energetic electrons and ions near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

10.
Deep Impact: A Large-Scale Active Experiment on a Cometary Nucleus   总被引:1,自引:0,他引:1  
The Deep Impact mission will provide the first data on the interior of a cometary nucleus and a comparison of those data with data on the surface. Two spacecraft, an impactor and a flyby spacecraft, will arrive at comet 9P/Tempel 1 on 4 July 2005 to create and observe the formation and final properties of a large crater that is predicted to be approximately 30-m deep with the dimensions of a football stadium. The flyby and impactor instruments will yield images and near infrared spectra (1–5 μm) of the surface at unprecedented spatial resolutions both before and after the impact of a 350-kg spacecraft at 10.2 km/s. These data will provide unique information on the structure of the nucleus near the surface and its chemical composition. They will also used to interpret the evolutionary effects on remote sensing data and will indicate how those data can be used to better constrain conditions in the early solar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号