首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 268 毫秒
1.
两层堆叠3D-IC层间液体冷却流动及换热特性   总被引:1,自引:1,他引:0       下载免费PDF全文
随着电路层的垂直堆叠,三维集成电路(3D-IC)的功耗密度成倍增加。具有良好散热能力的层间液体冷却是一种非常有效的方法。采用数值模拟的方法研究了雷诺数在150~900范围内面积为1cm2,针肋直径为100μm,通道高为200μm,通道间距为200μm的带有层间顺排微针肋两层芯片堆叠3D-IC内流体流动与换热特性。结果表明:与相应尺寸的矩形通道结构相比,带有层间顺排微针肋液体冷却3D-IC具有良好的换热效果。在雷诺数为770时,芯片的功率高达250W,其体积热源相当于8.3kW/cm3;较矩形结构通道,顺排微针肋结构的热源平均温度和热源最大温差只有46.34,13.96K,分别减小了13.26,21.34K。   相似文献   

2.
高阻塞比肋化通道对流换热特性实验研究   总被引:3,自引:3,他引:0       下载免费PDF全文
采用实验方法对高阻塞比肋化通道的对流换热特性进行了研究。实验的Re数为1400~4500,肋高(e)和通道水力直径(H)的比值(e/H)为0.2和0.33,肋间距(S)与肋高(e)的比值(S/e)为5,10和15。肋化通道中的肋有顺排和叉排两种排列形式。研究结果表明:(1)随着阻塞比和Re数的增加,对流换热系数逐渐增大,但相应的流动损失亦不断升高。(2)无论是顺排还是叉排肋化通道,在肋间距比分别为5,10和15三种情况下,间距比为10的对流换热系数和流阻损失均高于其它两种情况。(3)在实验几何参数范围内,顺排肋化通道的对流换热系数和流动压损均高于叉排通道。  相似文献   

3.
对传统圆形微针肋进行了优化,设计了3种不同尾角的水滴形微针肋热沉,并以去离子水为工质,实验研究了各热沉流动阻力和传热特性.结果表明:3种尾角针肋中,尾角为60°时减阻效果最好.水滴形针肋的流线型结构可以改善尾部流动分布,推迟流动由层流向过度区流的转变,且尾角越小效果越明显.不同体积流量下,水滴形针肋的最优尾角有所不同.在实验中,雷诺数范围在200~1000内,尾角为60°的水滴形针肋热沉强化换热效果最好.当尾角为30°时,太长的尾部结构受到下一排针肋的影响,造成较大的流动阻力,导致其整体换热效果较差.   相似文献   

4.
采用结构化六面体网格和k-ε湍流模型求解三维N-S方程,对内置不同肋间距与肋高比V型扰流肋片的直冷却通道,在入口雷诺数为20 000时的流动与换热特性进行数值模拟,分析了不同肋间距与肋高比对肋间壁面换热效果和流动损失的影响,并对肋间距与肋高比进行了全局寻优。结果表明,带肋直冷却通道的整体换热效果和综合冷却效率,分别和肋间距与肋高比呈近似函数关系,肋间距与肋高比为7.93时通道整体换热效果最好,为5.2时通道综合冷却效率最佳。  相似文献   

5.
膨胀循环推力室再生冷却换热的数值模拟   总被引:1,自引:0,他引:1  
韩非  刘宇 《航空动力学报》2007,22(11):1939-1946
为了解液体火箭发动机膨胀循环推力室再生冷却换热特性,采用数值模拟方法,研究了冷却剂流动方式、推力室圆柱段长度、圆柱段室壁加肋和气壁面粗糙度等因素对冷却通道压降、冷却剂温升、壁面热流密度和温度分布等换热特性的影响.计算过程中采用k-ε双方程湍流模型.计算结果表明:采取顺流冷却要比逆流冷却的冷却通道压降低,但同时冷却剂温升也低;对于室壁加肋结构,在肋个数相同而只改变肋高度的情况下,总换热量正比于总换热面积.   相似文献   

6.
为了探究带肋横流对凹槽孔气膜冷却特性的影响,运用realizable k-ε湍流模型,对光滑通道、45°肋通道和135°肋通道进气的凹槽孔进行了数值研究,吹风比变化范围为0.5~2.0,主流和横流的进口雷诺数分别为1×104和1×105。结果表明:45°肋通道与光滑通道在气膜孔内具有相似的螺旋流动,但其流量系数相比光滑通道降低了9.2%~43.6%,而135°肋通道气膜孔内的流动以直线流动为主,其流量系数最高。受横流影响,三种通道的气膜冷却效率都分布不均。在吹风比为0.5和1.0时,45°肋通道的气膜冷却效率要比光滑通道分别低11.2%和3.6%,135°肋通道则要比光滑通道高65%和44.6%。吹风比为2.0时,三种通道的气膜冷却效率相差不大。此外,45°肋通道的换热系数比要高于光滑通道1.5%~8%,而135°肋通道的换热系数比要低于光滑通道0.9%~3%。  相似文献   

7.
超燃冲压发动机再生冷却结构的多目标优化设计   总被引:5,自引:3,他引:2       下载免费PDF全文
秦昂  张登成  魏扬  周章文  张久星 《推进技术》2018,39(6):1331-1339
针对当前超燃冲压发动机再生冷却结构的优化研究存在对经验关联式依赖的问题,且对流动压力损失问题重视不足,采用响应面法结合多目标遗传算法,以燃气侧平均壁温和流动压力损失为优化目标,对单根再生冷却通道的肋高、槽宽和肋厚进行优化设计。结果表明:肋高对优化目标的影响程度最大,其次是槽宽、肋厚,且不同进口质量流量下设计变量对优化目标的影响规律是相似的。计算得到设计工况下的Pareto最优解集后,从中可选取多组综合流动换热性能优于初始通道的结构。对解集中一组优化通道进行圆整并以进口质量流量为设计变量建立响应面,获得了冷却平板的设计方案及1.539~9.604kg/s的允许进口质量流量范围。  相似文献   

8.
蛇型冷却通道中的蒸汽流动与换热特性研究   总被引:1,自引:0,他引:1  
采用CFX软件数值计算了带肋蛇形冷却通道内的空气流动与换热特性,验证了计算模型和方法,比较了湍流模型的适用性;在此基础上,数值计算了蛇形冷却通道内蒸汽的流动与换热特性,分析了蒸汽过热度、肋片角度和V型肋片对蒸汽流动与换热性能的影响。结果表明:SSG湍流模型的计算结果与实验数据吻合较好;蒸汽过热度对换热效果的影响较小;相对于光滑通道,带肋通道的弯道效应影响降低;V型肋片的换热效果好于平行斜肋。  相似文献   

9.
狭缝斜肋内冷通道流动和换热特性的数值研究   总被引:1,自引:0,他引:1       下载免费PDF全文
邓贺方  姜玉廷  张建  陆松兵  郑群 《推进技术》2020,41(9):2070-2076
为了探究狭缝斜肋的流动和换热特性,进一步挖掘传统斜肋的性能,采用数值模拟的方法,研究了五种不同位置和倾斜角度的狭缝对45°斜肋流动和换热特性的影响,计算的进口雷诺数为2×104~8×104,并与传统的实心肋进行了对比分析。结果表明,狭缝的存在显著改变了冷却通道的流动结构以及换热分布,降低了冷却通道的阻力损失,减小了通道整体的强化换热系数,但同时增加了肋片表面的强化换热系数,且狭缝的位置和倾斜角度的不同对通道性能也存在一定的影响。对比综合热效率,狭缝斜肋相比实心肋增加了约12%~15%。  相似文献   

10.
罗稼昊  饶宇  杨力 《推进技术》2021,42(12):2789-2798
为掌握交错肋冷却结构应用在涡轮叶片不同区域的流动传热性能,针对一种交错肋冷却结构在三种不同流动配置中在等质量流量和子通道雷诺数工况下进行了数值计算研究,三种流动配置包含了径向流动配置(RFC), 横向流动配置(CFC)和转折流动配置(TFC)。通过比较本研究得到的数值模拟结果与公开文献中的实验数据,定性定量地验证了本次数值计算的有效性。在等冷却质量流量下,RFC配置拥有最高的平均努塞尔数和压力损失,而CFC和TFC配置的平均传热性能相似且明显降低,但压力损失大大减少。在相同的子通道雷诺数下,三种流动配置下的交错肋通道展现出相似的传热强化性能,但TFC配置的压力损失最小。在研究范围内,在RFC配置中肋表面的平均换热比主表面的平均换热约高出16.3%,而在CFC配置和TFC配置中该值则分别高出38.2%以及 30.6%。不同的流动配置会引发子通道内不同的流动特性,包括流动转折和子通道间的交互作用。  相似文献   

11.
利用试验和数值模拟两种方法对装有圆形、椭圆形和水滴形三种叉排扰流柱阵列矩形通道内流动和换热过程进行了研究,获得了通道内流场、压力场以及壁面温度场的基本特征,并对其强化换热特性和压力损失特性进行了对比分析。结果表明:装有水滴形扰流柱阵列的矩形通道压力损失分别为前两者的51%和95%,而恒热流壁面的平均对流换热系数相对于前两者而言分别降低了20%和7.9%,压力损失降低的幅度明显高于强化换热的减弱。综合性能评估表明,水滴形扰流柱是一种具有较好综合性能、替代常规圆形扰流柱的理想结构。  相似文献   

12.
水滴形叉排扰流柱阵列矩形通道内流动和换热数值模拟   总被引:6,自引:1,他引:5  
运用数值计算的方法对具有水滴形叉排扰流柱阵列矩形通道内的流动和换热过程进行了三维数值研究,获得了通道内流场、压力场以及壁面对流换热的基本特征,并与具有相同截面积的圆柱形扰流柱进行了对比分析。研究结果表明:在本文研究的范围内,与圆柱形扰流柱相比,水滴形扰流的强化换热效果约下降约15%,但流动阻力却下降了近50%。   相似文献   

13.
R141b在矩形微尺度通道中的两相流传热特性   总被引:1,自引:0,他引:1  
设计搭建水力直径分别为1mm和0.5mm的矩形微尺度通道实验台,研究了以R141b型制冷剂作为工质的两相流沸腾传热特性。实验取热流密度为1~16kW/m2、质量流速为111.1~333.3kg/(m2·s)和质量干度为0~1,分析了三者对平均传热系数的影响,探究影响换热的主导因素。结果表明:热流密度较高时,平均传热系数随热流密度增加而减小,流动换热主要受到沸腾传热的影响;当质量流速较大且热流密度较低时,平均传热系数随热流密度增加而有所增长;热流密度较低时,平均传热系数随质量流速变化明显,热流密度升高到一定值后,质量流速对平均传热系数的影响很小;当质量流速处于111.1~333.3kg/(m2·s)时,平均传热系数随质量干度的增加而减小。   相似文献   

14.
基于Navier Stokes(N-S)方程组对包括隔热屏、隔热屏内外流、大气外流在内的涡轮基组合动力(TBCC)发动机燃烧室/喷管进行了一体化的气/热耦合数值模拟,考虑了燃气组分输运、辐射换热等影响,研究了其在某典型飞行状态下TBCC冲压发动机燃烧室/喷管筒体及隔热屏内外壁壁面温度、辐射换热热流及对流换热热流分布.结果表明:燃烧室/喷管筒体与对称面上下交线的壁面温度在轴向距离为0.5~2.6m内变化较小,在轴向距离为2.6~3.1m内急剧增加,在轴向距离为3.1~3.5m内急剧下降.之后,上交线筒体壁面温度沿流向减小,下交线筒体壁面温度先升高后降低.筒体壁面温度最高点在喷管下调节板收缩段,为1577K.隔热屏内壁面辐射热流在370~500kW/m2变化,上下交线处的辐射热流较外壁面的辐射热流约高300kW/m2,辐射热流沿流向先减小后增加.隔热屏外壁面辐射热流在50~200kW/m2范围内分布.   相似文献   

15.
建立以等热流密度方式进行试验件加热的沸腾换热试验系统,分别对当量直径为1.28mm和1.59mm锯齿扁管内R134a工质的沸腾换热特性进行研究,试验参数范围:制冷剂质量流率为68.5~305.5kg/(m2·s),工作饱和压力为0.27~0.46 MPa,加热热流密度为9~42kW/m2。试验结果表明:相同结构的通道,当量直径小换热能力更强;热流密度和饱和压力对沸腾换热的影响与一个干度值有关。当干度小于此值时,沸腾换热系数会随着热流密度及饱和压力增大而增大;而当干度大于此值时,沸腾换热系数随着干度增大而急剧下降,热流密度和饱和压力对换热的影响较小;该干度值会随着热流密度或饱和压力增大而逐渐变小。质量流率对沸腾换热的影响与热流密度有关,随着热流密度增大,质量流率的影响趋向大干度区域。通过分析各参数对沸腾换热的影响,建立了一个预测试验工况下微小尺寸锯齿扁管的沸腾换热系数计算经验公式。  相似文献   

16.
涡轮叶片尾缘内冷通道旋流冷却特性   总被引:3,自引:1,他引:2  
针对简化的叶片尾缘,设计了3种旋流冷却结构,即冷气分别从旋流腔中部射流孔、旋流腔异侧射流孔、旋流腔同侧射流孔进出旋流腔,并与常规凸台扰流柱冷却结构进行了对比数值研究,分析其强化换热机理和效果.结果表明:旋流腔的结构和冷气的进流布置对旋流冷却性能的影响很大,冷气从旋流腔某侧射流孔进出的旋流冷却结构不仅在流向截面产生涡旋,在展向截面也会产生涡旋,从而有效强化对流换热;相比凸台扰流柱冷却结构,旋流冷却结构能够增强换热,平均努塞尔数增大6.8%~22.9%,但流动阻力也随之增加;冷气从旋流腔异侧射流孔进出的冷却结构强化换热能力较高;而冷气从旋流腔同侧射流孔进出的冷却结构流动换热综合系数比凸台扰流柱提高4.2%,综合性能相对较优.   相似文献   

17.
涡轮叶片尾缘梯形通道异形扰流柱流动换热特性实验   总被引:4,自引:1,他引:3  
针对叶片尾缘梯形通道内叉排排列的圆形、椭圆形、水滴形和哑铃形扰流柱的流动换热特性进行了实验研究.研究结果表明:在相同的进口雷诺数情况下,水滴形扰流柱的通道压力损失最小,仅为圆形扰流柱的57%;圆形扰流柱和哑铃形扰流柱的换热效果差异不大,比椭圆形扰流柱的换热效果高约20%,比水滴形扰流柱的换热效果高25%左右;进口结构形式对流动换热特性的影响不是非常明显,双排小孔的挡板通道内压力较大,但是换热效果也相对较好.   相似文献   

18.
周期性变截面微通道热沉内流体流动与传热特性   总被引:1,自引:0,他引:1  
以去离子水为冷却工质,对周期性变截面微通道热沉内流体流动与传热特性进行了实验研究.获得了流体流过周期性变截面微通道热沉内的摩擦阻力系数、Nu数、不同热流密度下的加热膜温度、热阻和泵功的关系,并与传统直通道进行比较分析,结果显示周期性变截面微通道热沉由于流体冲击肋侧壁,增加了局部阻力,导致消耗的泵功增加,但换热能力却有了显著的提高,壁面温差减小,具有非常优越的换热性能,能够满足高热流密度微电子器件冷却的需要.   相似文献   

19.
为深入理解多影响因素作用下碳氢燃料跨临界过程换热恶化的特性,基于开源计算软件OpenFOAM对超临界RP-3的流动换热过程进行数值模拟。采用广义对应状态法则对碳氢燃料替代模型的物性进行计算,湍流模型选用SST(shear stress transport)k-ω湍流模型。与实验数据比较,热流密度为300~400kW/m2内的计算壁温平均误差小于3%。研究分析了换热恶化机理,讨论压力、进口温度、热流密度与质量流量之比对RP-3换热特性的影响。结果表明:拟临界温度附近RP-3热物性的剧烈变化是强制对流下发生换热恶化的主要原因;提高压力、降低热流密度与质量流量之比或减小进口温度是避免流体在拟临界温度附近发生换热恶化的有效措施;提出了换热恶化预测关联式,为主动再生冷却技术提供参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号