首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胶含量对CF/BF复合材料性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
制备了碳纤维/玄武岩纤维(CF/BF)增强酚醛树脂复合材料,研究了复合材料层合板不同胶含量对其层间剪切强度、热传导和耐烧蚀性能的影响。结果表明:CF/BF复合材料,在胶的体积分数为35%时,复合材料经纬向层间剪切强度达到最大值21和20 MPa;在胶的体积分数为39.5%处,热导率和线烧蚀率出现最低值0.366 W/(m.K)和87μm/s。CF/BF混杂纤维复合材料性能符合混杂纤维复合材料性能混杂效应规律。  相似文献   

2.
提出了一种采用有限元法计算平纹编织C/SiC复合材料等效导热系数的方法.首先研究了材料的细观结构,根据材料显微照片建立了带基体碳纤维束复合材料的单胞模型,采用基体中孔隙分布随机生成的单胞模型,计算了孔隙率对基体等效导热系数的影响,通过施加3组边界条件计算出带基体碳纤维束和复合材料的等效导热系数.最后应用提出的方法计算分析了碳纤维体积分数和孔隙率对复合材料等效导热系数的影响规律.结果显示:复合材料等效导热系数随碳纤维体积分数增大而线性下降,碳纤维体积分数从54%增加到78%的过程中,复合材料y轴方向的等效导热系数下降了12.8%,x与z轴方向的等效导热系数同时下降了8.6%;复合材料等效导热系数随孔隙率增大呈加速下降趋势,孔隙率从0增加到30%的过程中,材料的x与z轴方向的等效导热系数下降了22.91%,y轴方向的等效导热系数下降了34.66%.  相似文献   

3.
高导热C/ C 复合材料具有高热导率、低密度、低热胀系数和高温下高强度等性能,成为近年来最
具发展前景的散热材料之一。本文综述了国内外高导热C/ C 复合材料的发展现状,分析了C/ C 复合材料的热
物理性能及影响其热导率的因素,介绍了C/ C 复合材料的导热机理、碳纤维、基体炭的导热性能,以及高导热
C/ C 复合材料的制备和改性等。  相似文献   

4.
为考察纳米孔径的酚醛树脂基泡沫碳材料的烧蚀与隔热性能,以酚醛树脂为碳源,环戊烷为发泡剂,吐温80为表面活性剂,对甲苯磺酸为固化剂,采用发泡固化碳化工艺制备了低密度泡沫碳材料。所制备的泡沫碳材料密度为0. 3 g/cm^3,压缩强度达到了11. 7 MPa。采用LFA457激光导热仪考察了泡沫碳材料在不同温度下(25、200、400、600℃)的导热性能,25℃下热导率为0. 141 W/(m·K),600℃下热导率为0. 344 W/(m·K);通过氧乙炔试验(30 s/60 s)对泡沫碳材料与C/C复合材料在同样的气流条件下隔热性能进行了比较,在材料正面烧蚀峰值温度泡沫碳材料比C/C复合材料高出约400℃的情况下,背面峰值温度比C/C复合材料仍低出150℃;通过氧乙炔试验考察泡沫碳材料的抗烧蚀性能,氧乙炔烧蚀60 s的线烧蚀率为0. 031 mm/s。试验结果证明低密度的泡沫碳材料同时具备优异的隔热与高温抗烧蚀性能。  相似文献   

5.
碳/碳复合材料导热性能的研究   总被引:7,自引:0,他引:7  
对碳/碳复合材料在不同温度下的导热性能进行了研究。研究发现了碳/碳复合材料的导热机理介于金属材料和非金属材料之间,既有声子导热,又有电子导热。在实验温度范围内,导热系数随温度升高而增大。随碳/碳复合材料石墨化程度的增大,晶体微观结构渐趋完整,石墨片层的有序度增加,材料的导热性能增强。对于高密度的碳/碳复合材料,因为晶粒间联通状态良好,热传导载体运动的路径畅通,所以导热系数高。碳纤维及围绕纤维生长的热解碳是热传导的有效通道,所以沿纤维增强方向的导热系数高。  相似文献   

6.
采用真空热压烧结工艺制备了碳纤维体积分数分别为20%、40%和60%的高致密Cf/SiO2复合材料,研究了碳纤维含量对其组织结构,力学性能、热膨胀特性和抗氧化性能的影响规律。结果表明:SiO2基体及20%Cf/SiO2复合材料中,SiO2仍保持非晶态,碳纤维含量为40%和60%时,SiO2发生部分析晶;Cf/SiO2复合材料的抗弯强度、断裂韧性和断裂应变,随碳纤维含量增加均呈现先降低后又增加的趋势,而弹性模量则先增后降;60%Cf/SiO2表现出明显伪塑性;碳纤维含量增大,使复合材料的热膨胀系数成倍增加,抗氧化性变差。  相似文献   

7.
以短纤维树脂模压、炭布叠层和针刺毡为预制体,采用CVD方法制备了3种C/C复合材料,并研究了其氧化行为,计算了氧化反应动力学数据。结果表明在氧化失重率小于60%时,其氧化失重率与氧化时间呈线性关系,而且3种样品在700℃前后具有不同的表观活化能,由此导致不同的控制机制:700℃以下为动力学控制区,700℃以上为扩散控制区。C/C复合材料的氧化速率与预制体结构有关,这主要是因为不同的预制体结构导致形成了不同的热解炭组织,比较起来炭布/CVD炭复合材料的抗氧化性能最差,短纤维树脂模压/CVD和针刺毡/CVD炭复合材料具有较好的抗氧化性能。3种材料的氧化过程基本一致,都是首先从材料内空隙缺陷处开始氧化,伴随着炭纤维和基体炭同时氧化,炭纤维变得越来越细,最后基体炭只剩下很薄的一层,有的基体炭甚至已经氧化脱落而只剩下炭纤维裸露着,或者在炭纤维周围分布着极不均匀的多孔状热解炭。  相似文献   

8.
C/C复合材料在再入模拟环境中烧蚀性能研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为了研究轴棒法编织的高密度碳/碳(C/C复合材料在再入飞行时的烧蚀性能,采用热等离子体地面模拟再入烧蚀系统对C/C复合材料进行烧蚀试验。试验中分别采用氮气(N、氧气(O和空气作为工作气体,对比研究C/C复合材料在不同环境中的烧蚀率和烧蚀性能。结果表明,三种情况下试样的烧蚀率和微观形貌有很大差异;纯氧气时氧化反应的线烧蚀率和质量烧蚀率分别为0.0423mm/s和0.0451g/s大于纯氮气时氮化反应的0.0314mm/s和0.0338g/s也大于空气成分时复合反应的0.0215mm/s和0.0208g/s在试样烧蚀的热影响区发生轻微开裂;三种工况下的烧蚀机理不同,分别是碳的升华、碳的氧化和碳氮反应的某种组合。  相似文献   

9.
探讨了树脂基体、碳纤维增强体以及树脂基体 纤维的界面等对双马来酰亚胺 (简称双马 )树脂基复合材料冲击后压缩强度 (CAI)值的影响 ,指出降低树脂基体的交联密度和产生微观两相结构是提高碳纤维 /双马复合材料CAI值的两个典型方法。合适的树脂含量有利于保持复合材料体系较高的CAI值 ,采用高强高韧性的碳纤维可明显提高复合材料体系的CAI值。为获得较高的CAI值 ,保持合适的树脂基体 纤维界面性能也是必要的  相似文献   

10.
碳纤维增强可溶性聚芳醚树脂基复合材料的表面与界面   总被引:1,自引:0,他引:1  
首次对碳纤维增强含二氮杂萘酮联苯型聚芳醚砜酮(PPESK)基高性能热塑性树脂基复合材料的界面进行了研究。采用空气冷等离子体处理方法对碳纤维表面进行处理。用XPS测试分析了不同等离子体处理时间对CF-原丝表面元素组成的影响及其变化规律。用FT-IR测试分析了经等离子体处理前后碳纤维表面的官能团的变化。采用动态接触角测试分析了不同处理时间下,碳纤维浸润性的变化规律,进一步分析了复合材料界面的粘结机理。采用AFM测试分析等离子体处理时间对碳纤维表面粗糙度的影响。利用ILSS测试方法表征了碳纤维/PPESK复合材料的层间剪切强度,确定了最佳的等离子体处理条件。利用SEM观察了碳纤维/PPESK树脂基复合材料的层间剪切破坏形貌。结果表明:对碳纤维的最佳的等离子体处理条件为:处理功率200W,处理时间15m in。在这一条件下处理碳纤维,复合材料的ILSS值最达可提高13.5%。经过适当的等离子体处理后,碳纤维表面的极性基团的含量、浸润性能和粗糙度均得到改善,增强纤维与树脂基体间界面的粘结性能得到提高,从而提高了复合材料的力学性能。  相似文献   

11.
影响碳化硅基复合材料机械性能的工艺因素   总被引:4,自引:0,他引:4       下载免费PDF全文
介绍了纤维及预制体成型、高温处理、界面技术、基体致密化及后处理等工艺因素对碳化硅基复合材料机械性能的影响。基体密化工艺是影响复膈材料性能最为主要的因素,化学气相渗透工艺制备的碳化硅基复合材料的强度和韧性明显高于其它工艺制备的复合材料,预制体高温处理可提高纤维在基体复合材料及使用过程中的高温稳定性,减少纤维/基体界面的热应力,但高温处理会引起纤维强度大幅度下降,在高温处理前先进行中间相涂层处理,不仅  相似文献   

12.
采用碳纤维复合网胎针刺预制体,通过溶液浸渍工艺制备了碳纤维增强C/C-SiC和C/C-SiC-ZrB2陶瓷基复合材料,并对材料的力学、热物理和烧蚀性能进行了分析对比。结果表明:针刺C/C-SiC-ZrB2复合材料的面内弯曲强度、厚度方向的压缩强度、层间剪切强度分别为199、274和19.3 MPa,各性能均低于对应的针刺C/C-SiC复合材料。针刺C/C-SiC-ZrB2材料与针刺C/C-SiC材料相比,热导率得到大幅度提高,而线胀系数略微有所降低。2 500 K、600 s风洞试验后,针刺C/C-SiC-ZrB2复合材料表现出良好的抗氧化烧蚀性能,质量烧蚀率约0.4×10-4g/s。  相似文献   

13.
C/C—SiC复合材料的制备与性能   总被引:14,自引:1,他引:14       下载免费PDF全文
采用化学气相渗透(CVI)法和液相浸渍有机物先驱体混合工艺制备了C/C-SiC复合材料,并对复合材料力学性能、抗烧蚀性能和抗氧化性能进行表征。结果表明:制备的C/C-SiC复合材料在基本保证C/C复合材料力学性能的基础上,抗氧化和抗烧蚀性能得以大幅度提高,提出了制备兼具C/C复合材料与陶瓷材料的技术途径。  相似文献   

14.
采用热压法制备ZrB2/C复合材料,利用氧乙炔火焰烧蚀法测试材料的质量烧蚀率和线烧蚀率,采用扫描电镜和X射线衍射分析材料的微观结构及物相变化。研究结果表明:和相同工艺制备的纯石墨材料相比,ZrB2的引入降低了炭材料的质量和线烧蚀率,ZrB2的加入量越大,烧蚀率降低幅度越大,ZrB2引入明显提高了炭材料的抗烧蚀性能;通过微观结构分析,探讨了ZrB2形态和含量对复合材料抗烧蚀性能影响的机理,研究结果展示了此材料作为高温烧蚀材料的良好应用前景。  相似文献   

15.
为了研究纤维表面状态对C/C-SiC复合材料微观组织和相成分的影响,将T300碳纤维在氮气氛围中进行不同温度的热处理后,采用液硅熔渗法制备了C/C-SiC复合材料。采用光电子能谱(XPS)对纤维表面成分进行了分析。结果表明:未处理纤维表面具有较高的氧含量,随着热处理温度的升高,纤维表面氧含量逐渐降低,导致纤维表面含氧官能团数目减少。扫描电镜(SEM)观察发现:未处理纤维增强的C/C预制体,孔隙尺寸较大且孔隙率低;而经1 500℃热处理纤维增强的预制体,孔隙尺寸较小但孔隙率高。随后对C/C预制体进行液硅熔渗处理,并对熔渗反应过程分析发现:由未处理纤维增强的预制体,液硅熔渗反应主要受溶解-沉淀和界面限制的扩散反应过程控制,获得的C/C-SiC复合材料中SiC基体相分布规则且含量较低,同时含有较高的残留Si;而经1 500℃热处理纤维增强的预制体,熔渗反应则主要受溶解-沉淀过程控制,获得的C/C-SiC复合材料中SiC基体含量多且分布较均匀,残留Si含量较少。  相似文献   

16.
为了提高超高温陶瓷基复合材料的力学性能和耐烧蚀性能,本文采用前驱体浸渍裂解(PIP)工艺制备了C/ZrC-SiC复合材料,研究了锆硅一体化陶瓷前驱体(ZS)的固化-裂解工艺对C/ZrC-SiC复合材料性能的影响。结果表明:前驱体的裂解温度对复合材料的力学性能影响较大。较高的裂解温度会损坏碳纤维,导致力学性能降低;较低的裂解温度会使碳热还原反应不充分,基体氧含量较高,结构疏松,导致力学性能下降;制备的C/ZrC-SiC复合材料通过了2 850 K的电弧风洞试验考核后线烧蚀率为8.75×10~(-4)mm/s,呈现出优异的耐烧蚀性能。  相似文献   

17.
喉衬热环境与碳/碳复合材料的烧蚀   总被引:7,自引:0,他引:7       下载免费PDF全文
在分析固体火箭发动机喷管喉衬热环境与碳/碳复合材料烧蚀行为的基础上,从材料的角度讨论了影响碳/碳复合材料烧蚀性能的因素。结果表明:碳/碳复合材料的烧蚀是受喉衬复杂燃气环境众多因素共同作用的结果,主要的烧蚀效应有碳的升华、表面异相化学反应以及机械侵蚀;影响碳/碳复合材料烧蚀性能的材料本体特性有纤维特性、预制件结构、材料密度、孔隙、基体碳的种类、石墨化度、杂质,其中部分因素存在交互影响的作用。  相似文献   

18.
柔性氧化硅气凝胶隔热复合材料的制备和性能   总被引:5,自引:0,他引:5  
以正硅酸乙酯为原料,高硅氧纤维为增强体,采用氨水催化一步法制备了柔性的纤维增强氧化硅气凝胶隔热复合材料。当pH=7时,气凝胶的比表面积最大;水含量增大,比表面积降低;乙醇含量增大,比表面积增大,EtOH/TEOS(摩尔比)大于10以上,比表面积增加不明显,趋于稳定。以比表面积较大的气凝胶作为基体的柔性复合材料常温热导率为0.031 W/(m.K)[纯高硅氧纤维毡为0.044 W/(m.K)]。该柔性隔热材料安装方便,特别适用于大面积、不规则形状的包覆隔热。  相似文献   

19.
为了提高沥青基炭纤维表面活性,采用臭氧氧化法对沥青基炭纤维表面进行改性。采用AFM,XPS研究了臭氧改性后沥青基炭纤维表面结构的变化。利用浸润仪测定了改性前后沥青基炭纤维表面能的变化,并用SEM分析了炭/炭复合材料断口形貌。结果表明,臭氧氧化使沥青基炭纤维表面含氧官能团和表面粗糙度增加,提高了沥青基炭纤维的表面能。炭/炭复合材料力学性能得到明显提高。  相似文献   

20.
研究了碳纤维难熔金属纤维混杂增强碳基体复合材料中难熔金属与碳之间的化学反应.结果表明,条件不同,难熔金属W丝、Ta丝与不同形式碳的反应程度、反应产物及结构有很大的区别.低温区,难熔金属与碳不发生明显化学反应,中温区W丝可与气态的碳氢气体发生轻微化学反应,高温区W丝、Ta丝可与固态沥青碳以及碳纤维发生反应.通过控制反应条件,可以得到难熔金属纤维碳纤维混杂增强碳基体、含难熔金属碳化物的难熔金属纤维碳纤维混杂增强碳基体和难熔金属碳化物纤维碳纤维混杂增强碳基体复合材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号