首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
飞机结构的腐蚀疲劳及其控制   总被引:1,自引:0,他引:1  
简述了环境介质对飞机结构疲劳裂纹形成和扩展的影响,讨论了腐蚀疲劳扩展的特点,从工程实践出发推荐了用于工程结构腐蚀疲劳裂纹扩展分析的基本方程。  相似文献   

2.
基于概率疲劳的结构耐久性分析方法研究   总被引:1,自引:0,他引:1  
从概率疲劳和概率断裂力学角度出发,以结构细节疲劳特征强度为基础表示结构的疲劳特性,给出了结构细节疲劳特征强度随裂纹长度变化的数学表达式,对整个S N曲线的特征作了更深入的探讨,为基于概率疲劳角度进行耐久性分析奠定了基础。  相似文献   

3.
一种适用于应力疲劳和应变疲劳的通用寿命模型   总被引:2,自引:1,他引:1  
本文通过应变分布对寿命的影响函数分析,导出了一种适用于应力疲劳和应变疲劳的通用寿命模型。通过应变分布影响系数把应变疲劳与应力疲劳联系起来。该方法不仅可用于构件从应力疲劳到应变疲劳的各类疲劳寿命预测,还可用于构件的疲劳试验模拟件设计。文中列举了各种典型材料的典型应力集中试件的算例。   相似文献   

4.
随着复合材料在先进飞行器结构中占比的逐渐增加,复合材料在服役过程中力学性能的变化对飞行器整体的安全至关重要。为了实现基于导波原位检测的飞行器复合材料整体部件疲劳评估和寿命预测,首先,从宏观和细观的角度研究复合材料疲劳损伤演化规律;在此基础上,通过分析导波波场信息,探究导波相速度、模态能量比等特征在表征复合材料疲劳方面的潜力;其次,从复合材料损伤机理出发,建立导波相速度与疲劳损伤累积的演化模型;然后,构建深度学习框架,以数据驱动的方式从导波波场中提取疲劳演化特征;最后,提 出基于贝叶斯模型平均方法的疲劳演化模型,对复合材料剩余疲劳寿命进行预测。结果表明:通过提取和分析导波特征信息,可以准确地对复合材料疲劳状态进行表征,结合贝叶斯模型平均方法和置信区间准则,实现了在试件疲劳破坏之前的剩余寿命预测。  相似文献   

5.
结构振动疲劳的工程分析方法   总被引:1,自引:0,他引:1  
姚起杭  姚军 《飞机工程》2006,(1):39-42,50
介绍了结构振动疲劳的概念;引入了结构在周期振动载荷和随机振动载荷作用下的振动疲劳曲线;提出了振动疲劳的线性和式累积损伤关系式以及振动疲劳的破坏判据;从工程角度给出飞机结构在随机振动载荷作用下的寿命分析方法,即利用正弦共振S-N曲线进行随机分析的方法以及借用声疲劳分析技术计算随机振动疲劳的方法等。  相似文献   

6.
从疲劳分散系数的含义入手,分析了国内、外军用标准和民用适航标准对于疲劳分散系数的要求,从中找出了影响战斗类飞机与运输类飞机疲劳分散系数的因素,给出了确定大型运输机全尺寸疲劳试验分散系数的原则。  相似文献   

7.
董祥林  信庆祥 《航空学报》1990,11(10):420-425
 对歼击机机翼全尺寸模拟疲劳试验的耳片断口进行了观察和分析,从断裂处存在磨痕和磨屑的形貌及耳片受力变形状态,证明耳片属于微动疲劳断裂。本文提出铝合金耳片和钢衬套接触时,微动疲劳裂纹萌生过程的模型。  相似文献   

8.
根据某歼击教练机疲劳定寿要求,从工程角度对机翼主梁根部疲劳危险孔进行全寿命分析。  相似文献   

9.
用光学显微镜、扫描电子显微镜(SEM)、原子力显微镜(AFM)、显微硬度计、残余应力测定仪,分析研究渗碳M50NiL钢普通磨削和精密磨削两种工艺的表面完整性特征,通过旋转弯曲疲劳实验实测两种试样的疲劳性能,并对疲劳实验结果进行模拟分析。结果表明:在不考虑表面加工缺陷的理想情况下,渗碳M50NiL钢旋转弯曲疲劳裂纹在亚表面起源;普通磨削产生的表面应力集中,将疲劳源从亚表面移至表面;精密磨削通过优化磨削工艺改善了表面变质层特征,有效抑制了加工表面应力集中敏感,将疲劳源从表面回归至亚表面;旋转弯曲疲劳寿命最高可提高30倍,平均提高15倍。  相似文献   

10.
本文对某机型尾桨毂轴套耳片疲劳裂纹产生的根源,着重从影响产品疲劳特性的结构设计、设计选材,载荷及生产工艺等主要因素进行了分析。通过理论分析认为,引起疲劳裂纹的最大可能性是工艺加工所致。经过产品的断口分析及取样测试,确认为机械加工粗糙,有关尺寸不符合图纸要求,是这次疲劳裂纹产生的直接原因。  相似文献   

11.
我国民航事业的发展需要依靠大型运输客机的自主研发和高效的空中交通管理体系两大软硬实力的支撑。空中交通管制员作为空中交通管理的核心要素,其疲劳状态的检测与管理对于航空安全具有重要作用。本文首先从传统主观量表评定和客观评定方法两个方面详细阐述了国内外疲劳检测的研究成果,分析其优缺点;然后介绍了基于语音分析的管制员疲劳特征提取与检测算法,并且着重介绍了基于深度学习模型的语音疲劳状态识别算法;最后阐述了管制员疲劳检测成果对管制运行安全和效率提升的应用前景。研究成果可为从事管制员疲劳检测与管理的研究人员提供参考和借鉴。  相似文献   

12.
本文对某机型尾浆毂轴套耳片疲劳裂纹产生的根源,着重从影响产品疲劳特性的结构设计,设计选材,载荷及生产工艺等主要因素进行了分析,通过理论分析认为,引起疲劳裂纹的最大可能性是工艺加工所致,经过产品的断口分析及取样测试,确认为机械加工粗糙,有关尺寸不符合图纸要求,是这次疲劳裂纹产生的直接原因。  相似文献   

13.
关于航空发动机结构声疲劳寿命估算方法的探讨   总被引:13,自引:5,他引:8  
噪声载荷是一种高频、宽带随机载荷,在低循环疲劳寿命预测中被广泛采用的时域计数法很难直接利用。根据现有的累积疲劳损伤理论,噪声载荷下结构疲劳寿命分析的关键在于如何在频域中获得雨流循环的概率密度函数。本文对从疲劳应力功率谱密度出发获得寿命估算所需要的应力峰值或应力雨流循环幅值的概率密度函数的方法进行了分析与比较,并对发动机结构声疲劳分析中值得深入研究及发展的方法给出了建议。   相似文献   

14.
老龄飞机结构广布疲劳损伤研究的关键问题   总被引:1,自引:0,他引:1  
老龄飞机的广布疲劳损伤问题已经成为学术界和工业界关注的问题之一。从飞机机身蒙皮连接的细节应力分析、裂纹形成、裂纹扩展、剩余强度等几个方面对广布疲劳损伤进行了研究,并对当前需要研究的问题进行了分析。  相似文献   

15.
智能材料结构在众多领域应用广泛,为防止智能材料结构在使用时发生疲劳失效,研究智能材料结构的疲劳可靠性问题有着重要意义.本文从疲劳失效的微观表征、疲劳试验的宏观现象以及疲劳可靠性问题的研究方法等角度,分析了裂纹对压电传感器性能的影响,探究了压电换能器在振动能量回收中发生疲劳失效的机理.阐述了形状记忆合金发生结构性疲劳的微...  相似文献   

16.
基于人工神经网络的预腐蚀铝合金疲劳性能预测   总被引:20,自引:0,他引:20  
刘延利  钟群鹏  张峥 《航空学报》2001,22(2):135-139
 通过对BP神经网络算法分析和收敛性改进,从获得的预腐蚀和疲劳试验数据中通过训练建立了LY1 2CZ铝合金腐蚀性能和疲劳特性与预腐蚀温度和时间的映射模型,从而可预测铝合金在一定预腐蚀环境谱下的最大腐蚀深度和疲劳特性。神经网络算法采用 BP算法 ,网络结构采用2-4-2形式。结果表明 ,神经网络用于预腐蚀铝合金的腐蚀状况和疲劳性能预测是可行的  相似文献   

17.
粉末合金的高温疲劳断裂性能   总被引:1,自引:0,他引:1  
实验研究了Rene'95和II741粉末合金的高温低周疲劳、裂纹扩展速率和断裂韧性,并与变形镍基合金GH4169进行了分析对比。结果表明,Rene'95合金的低周疲劳性能略高于GH4169,但从强度与塑性配合的角度来看,没有变形合金理想;其疲劳裂纹扩展速率da/dN和断裂韧性KIC基本相当。  相似文献   

18.
首先介绍了某复合材料主桨叶疲劳试验提前破坏情况,并从结构设计、制造质量和试验方法三个方面进行分析,最终找出了试验载荷超过了桨叶过渡段后缘抗屈曲能力是此次疲劳试验提前失效的主要原因,另外摆振刚度突变和模压桨叶质量差是导致在1000剖面附近开胶的重要原因。在第二次疲劳试验时,通过改进桨叶结构和制造工艺,调整试验载荷,最终获得了疲劳试验验证。  相似文献   

19.
采用ANSYS软件进行模态分析和谐响应分析,确定钛合金(TC17)试样尺寸和试验加载频率。利用弯曲疲劳试验系统进行试样在室温20kHz条件下的超高周疲劳试验。通过分析试验数据,计算得到p-S-N曲线,发现在大于107循环时,试样不存在传统意义上的疲劳极限。运用Paris模型从理论上计算得到钛合金(TC17)试样裂纹扩展寿命,发现其不超过中值疲劳寿命的2.1%。  相似文献   

20.
为评估抗疲劳主要参量对S-N曲线的作用规律,采用双参数疲劳寿命模型作为分析基础,引入材料本征S-N曲线概念,将制造参量转化为制造结果参量系数,在从理论模型角度系统分析各个参量对寿命曲线的作用规律的基础上,进一步对实验获得的高温合金GH4169在成型机加工、表面完整性机加工和表面高能强化三种制造工艺下的疲劳S-N数据进行疲劳抗力系数M_f和理论疲劳极限S_c对应力集中系数K_t的敏感性进行分析。结果表明:高能强化可显著提高光滑试样和缺口试样的疲劳性能;对于光滑构件或低应力集中系数的构件,高能强化对疲劳性能的提高主要表现在提高了疲劳抗力系数;而对于高应力集中系数的构件,高能强化对疲劳性能的提高主要表现在提高了理论疲劳极限;此外,利用结果参量系数分析S-N曲线的方法,对于理解抗疲劳制造机理具有重要参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号