首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Applications of Brayton cycle technology to space power   总被引:1,自引:0,他引:1  
The Closed Brayton Cycle (CBC) power conversion cycle can be used with a wide range of heat sources for space power applications. These heat sources include solar concentrator, radioisotope, and reactor. With a solar concentrator, a solar dynamic ground demonstration test using existing Brayton components is being assembled for testing at NASA Lewis Research Center (LeRC). This 2-kWe system has a turbine inlet temperature of 1015 K and is a complete end-to-end simulation of the Space Station Freedom solar dynamic design. With a radioisotope heat source, a 1-kWe Dynamic Isotope Power System (DIPS) is under development using an existing turboalternator compressor (TAC) for testing at the same NASA-LeRC facility. This DIPS unit is being developed as a replacement to Radioisotopic Thermoelectric Generators (RTGs) to conserve the Pu-238 supply for interplanetary exploration. With a reactor heat source, many studies have been performed coupling the SP-100 reactor with a Brayton power conversion cycle. Applications for this reactor/CBC system include global communications satellites and electric propulsion for interplanetary exploration. applications. The CBC consists of a heater, turboalternator compressor (TAC), cooler, and recuperator. A mixture of He and Xe is used as the working fluid in the CBC system. The He provides superior heat transfer characteristics in the heater, cooler, and recuperator. The Xe adjusts the molecular weight to provide superior aerodynamic performance for maximized turbine and compressor efficiency. Cycle studies are performed to select the optimum He/Xe molecular weight or He to Xe mixture ratio. The following presents the characteristics and advantages of using the CBC for space power applications, CBC development status, characteristics and applications of the CBC with each of the heat sources, and finally performance projections  相似文献   

2.
Background on the space exploration program is discussed, and the currently identified NASA exploration missions are contrasted with the missions that were being planned a year ago. Developments in high-efficiency dynamic radioisotope power systems are discussed: and Brayton and Stirling power conversion cycles are compared for the missions planned for the next decade. Issues related to the use of high-efficiency radioisotope (HER) power systems are identified. It is noted that HER power systems are approximately three times as efficient as current radioisotope thermoelectric generators(RTGs) and are therefore significantly cheaper. Additionally, the world's supply of 238Pu is extremely limited. Currently discussed missions would cut deeply into this supply if powered by RTGs  相似文献   

3.
为提高闭式动力装置续航,本文建立了一种基于金属铝水反应的闭式布雷顿循环与固体氧化物燃料电池(solid oxide fuel cell,SOFC)联合动力装置。本文以100 kW为输出功率为设计目标进行数学模型的建立,通过布雷顿循环与SOFC循环换热特点进行迭代分析,分别以最大化铝水放热量和提高铝水反应热品质为目标搭建了两个动力系统,并确定了联合动力装置的功率分配和主要参数的设计。结果表明:以提高铝水反应热品质为目标的系统在效率和能量密度方面更具优势。SOFC输出功率占50.98kW,布雷顿循环占49.13kW,系统发电效率为40.02%。  相似文献   

4.
Essential design factors and system characteristics are explored for integration of large power systems into manned space stations. The impact of the type of power system selected upon the space station is outlined, as is the impact of the mission requirements upon the selection of power systems. Criteria for resolving the selection/application/ integration problems are provided. Comparisons between systems are based on recently defined space-station models for 90-day to five-year mission durations in the 1970' s, with four-to nine-man crews. Power systems encompass power levels from 3 to 50 kWe and include solar cell/battery. fuel cell, hybrid fuel cell/solar cell, radioisotope, and nuclear reactor systems. Thermoelectric, Brayton cycle, organic Rankine, and liquid-metal Rankine power conversion systems are considered for the nuclear energy sources. Both rigid and roll-out photovoltaic array configurations are analyzed with respect to the solar energy source.  相似文献   

5.
介绍了俄罗斯新发展的一种外涵回热式燃机FTY-18ⅡC,这种燃机的外涵增压空气经与内涵燃机的排气换热后驱动热空气涡轮。该涡轮与内涵燃气动力涡轮共轴输出功率18MW,轴端热效率44%。对FTY-18ⅡC的布雷顿-空气底部复合循环方式与常规回热循环及LM2500的布雷顿-空气底部联合循环和WR21的间冷回热循环做了比较。估算了将斯贝MK202涡扇发动机改装成这种外涵回热燃机的最大功率为17.9MW,热效率为39.1%。  相似文献   

6.
针对闭式布雷顿循环发电系统热力循环过程及其参数影响,开展系统的热力过程参数建模研究,建立系统发电功率、比功率和效率的计算模型;在此基础上,研究闭式布雷顿循环发电系统比功率和效率随涡轮入口总温及效率、压气机入口总温、压气机压比及效率、累积总压恢复系数等的变化规律,考虑参数灵敏度及其优化潜力,提出可用灵敏度并对系统的比功率和效率进行灵敏度分析。研究表明,闭式布雷顿循环发电系统的比功率和效率随涡轮入口总温及效率、压气机压比及效率、系统累积总压恢复系数等参数的增大而增高,随压气机入口总温的增大而减小。在压气机入口总温、压比与效率、涡轮入口总温及效率、累积总压恢复系数等主要热力参数中,系统比功率灵敏度最高的参数为涡轮效率,系统效率灵敏度最高的参数为压气机压比。考虑参数的实际优化潜力,在循环工质一定的条件下,系统比功率可用灵敏度最高的参数为涡轮入口总温,系统效率可用灵敏度最高的参数为压气机压比。  相似文献   

7.
研究定常态恒温热源热机循环性能,导出内可逆卡诺热机和布雷顿热机的最佳功率、效率关系和最大功率及相应的效率界限,并对这两种热机循环的最优性能进行了比较。理论分析表明,只有当工质的热容率趋于无穷大时,布雷顿循环才能达到卡诺循环的性能。数值计算显示,当布雷顿循环的工质热容率为高、低温侧换热器的热导率总量的1.5倍时,布雷顿循环的功率已为卡诺循环功率的99%以上。  相似文献   

8.
研究定常态恒温热源热机循环性能,导出内可逆卡诺热机和布雷顿热机的最佳功率、效率关系和最大功率及相应的效率界限,并对这两种热机循环的最优性能进行了比较。理论分析表明,只有当工质的热容率趋于无穷大时,布雷顿循环才能达到卡诺循环的性能。数值计算显示,当布雷顿循环的工质热容率为高、低温侧换热器的热导率总量的1.5倍时,布雷顿循环的功率已为卡诺循环功率的99%以上。  相似文献   

9.
空间站太阳能吸热器蓄热性能地面模拟试验   总被引:2,自引:0,他引:2  
利用相变材料 (PCM)的熔化潜热来蓄热可以保证空间站太阳能热动力系统在轨道的阴影期内仍能连续发电。针对这一核心技术 ,建立了空间太阳能吸热 -储热器单元换热器地面模拟实验台。在模拟轨道条件下 ,对不同入射热流、不同工质进口温度及不同工质流量进行了多种组合测试。结果表明 ,单管工质气体的出口温升在轨道的日照期和阴影期都达到了预期的要求 ,相变材料容器的最高温度和平均温度都处于材料的安全范围内。  相似文献   

10.
The commercialization status of Stirling machines varies from established niche market products to potential products that are in early stages of development. In other words, we are talking about a typical emerging technology. Many organizations are actively pursuing product development based on Stirling machine technology. Stirling machines offer significant performance advantages, but many obstacles remain to be fully resolved, including cost and demonstrated reliability. This article describes the technology upon which Stirling machines are based. Several application areas are then explored, including hot air engines, remote power, solar thermal power, sensor cooling, refrigeration, cogeneration and air-independent propulsion  相似文献   

11.
Exploration of the planets beyond Mars and their surroundings is already planned. Astronomy researchers are citing important information that can be obtained with instrumented spacecraft that fly beyond the planets of our solar system. Spacecraft flying these missions need power for performing their functions and communicating with Earth stations. Sunlight in these zones is so weak that alternative energy sources are needed. An alternative power source for deep-space missions is radioisotope heated energy converters.. The choice of heat-to-electric power conversion is narrowing to: 1) the Stirling engine; and 2) a combined cycle with thermionic and alkali-metal thermoelectric (AMTEC) heat-to-electricity conversion. For propulsion into deep space, a nuclear-reactor-heated AMTEC energy converter that powers ion engines can become the best alternative to hoisting tons of rockets into Earth orbit.  相似文献   

12.
研究定常态变温热源热机循环性能,导出内可逆卡诺热机和布雷顿热机的最佳功率、效率关系和最大功率及相应的效率界限,并对这两种热机循环的最优性能进行了比较。理论分析表明,在相同的边界条件和热效率下,布雷顿循环的功率可以高于卡诺循环的功率,极限情况下前者是后者的两倍。对于变温热源条件,布雷顿循环主要受益于其工质与热源间有较佳的匹配。所得结果对热机工作参数和工质的最优选择有一定指导意义。  相似文献   

13.
航空航天用闭式布雷顿循环的热力学优化   总被引:1,自引:2,他引:1       下载免费PDF全文
闭式布雷顿循环在航空航天电源系统中有着前景。文中用限时间力学方法研究恒温热源不可闭简单布雷顿循环的性能,导出其最佳功率的与效率间的关系,所得结果比经黄热力优化结果更具意义。  相似文献   

14.
应用有限时间热力学方法,首次研究了变温热源条件下内可逆闭式中冷回热布雷顿循环的性能。导出了无因次功率及效率的解析式,由数值计算,分析了循环最优功率和最优效率时的最佳中间压比分配。并研究了中冷度,回热度和高低温侧换热器的有效度,循环热源进口温比以及中冷源与低温侧热源进口温比对循环性能的影响。  相似文献   

15.
Powered by free-piston Stirling engines, linear alternators are proposed for space power stations as well as for isolated domestic applications, automotive, and on-Earth solar power plants. As the literature on the subject is sparse and base-design oriented, we present the general equations for both three-phase and single-phase winding configurations having permanent-magnet field excitations.  相似文献   

16.
恒温热源内可逆中冷回热布雷顿循环功率密度分析   总被引:1,自引:2,他引:1  
用有限时间热力学方法分析内可逆恒温热源中冷回热布雷顿循环,由数值计算给出了燃气轮机功率密度特性,分析了循环各热力参数对功率密度的影响,并对最大功率密度和最大功率时循环的主要参数进行了比较.得出了最大功率密度设计的优点和不足。  相似文献   

17.
爆震燃气轮机的变比热容热力循环性能   总被引:2,自引:2,他引:0  
为分析变比热容下爆震燃气轮机的热力循环性能,建立了考虑比热容随工质成分及温度变化的爆震燃气轮机热力循环模型,分析中同时考虑了压气机、燃烧室、透平等部件的效率.在不同比较条件下,利用变比热容法对比分析研究了燃气轮机爆震循环(DCGT)、Brayton循环和Humphrey循环燃气轮机的热力循环性能.计算结果表明:与Brayton循环相比,DCGT具有较大性能优势;在透平前温度为1620K且压比为16.5时,DCGT热效率较Brayton循环高28.8%;在无量纲吸热量为4.25且压比为16.5时,DCGT热效率则较Brayton循环高30.7%.   相似文献   

18.
用有限时间热力学方法分析变温热源条件下不可逆回热式布雷顿循环的功率密度特性,计人工质与高、低温测换热器的热阻损失,压气机、涡轮机的不可逆压缩和膨胀损失和管路系统中的压力损失,导出了功率密度与压比间的解析式,并通过数值计算将对应于最大功率密度时的一些参数与对应圩最大功率时的同样参数进行了比较。  相似文献   

19.
Many proposed space based observations will rely on the use of closed cycle and passive cooling systems to provide the thermal environment for high sensitivity. The use of closed cycle mechanical coolers on space telescopes poses particular integration problems; some of these difficulties are discussed in this paper.One of the major problems envisaged is that of exported vibration. This problem, and that of the heat sinking required, can be alleviated by siting the compressors of the Stirling cycle precooler further from the displacer unit. The effect of the separation between the compressors and the displacer on the performance of the Stirling cycle precooler has been measured. Increasing the separation from 170 mm to 565 mm decreases the cooling power at 25 K from 220 mW to 180 mW. In most applications this would be acceptable.The pre-cooler provides cooling at a single point. In situations where refrigeration of extended objects (e.g. telescope mirrors) is required, some distribution method has to be found. A scheme for achieving this is presented together with preliminary calculations on such a system.Temperatures in the region of 2.5 to 4K are required to meet the requirements for long wavelength detectors. We have demonstrated how these temperatures can be achieved in a continuously operating closed cycle cooler that has been engineered for space applications. This cooler consists of a two-stage Stirling cycle precooling a closed cycle Joule-Thomson (JT) stage. Temperatures in the region of 4K are achieved by the use of helium-4 in the JT system. The lighter isotope of helium is used to obtain temperatures down to 2.5 K. Under no-load conditions the precooler reaches a base temperature of 11.3K. The JT system achieves 4.3 K with a 10 mW heat load and 2.5 K with a heat load of over 3 mW. The input power to the cooler is approximately 126 W.The temperature stability of the cooler at low temperatures is important to keep detector drift to a minimum. The temperature of the JT stage has been measured in uncontrolled laboratory conditions and found to vary by only 30 mK over a seventy hour period. The pre-cooler temperature varied by approximately 0.6 K during these measurements.  相似文献   

20.
Research into potential power systems for the First Mars Outpost (FMO) was performed. The author examined a representative mission architecture which was developed by NASA to determine power system requirements. Power system options including nuclear, isotope, photovoltaic (PV), chemical heat engine, and regenerative fuel cell (RFC) concepts were identified for potential Mars surface applications. A top-level characterization study was conducted to determine power system mass and area for each application. It is seen that PV systems are generally not suited for Mars surface applications due to the large surface area required and higher mass than a closed Brayton cycle SP100 reactor system. A reactor is currently being considered by NASA Lewis Research Center to provide power for base architectures including an ISRU (in situ resource utilization). An oxygen/methane powered heat engine would provide 40 kWe of emergency power for the habitat. A dynamic isotope power system (DIPS) is the current choice for a long-duration pressurized rover due to the excessive size of a PV/RFC system and higher mass of a heat engine system. DIPS has advantages for other low power systems due to its neatly immediate availability and flexibility (night or day power; no recharging required)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号