首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
Increasing the rotating speed is considered as an efficient approach to upgrade the power-to-weight ratio in an axial piston pump, but penalized by more leakage and more severe wear resulting from the adverse cylinder block tilt. Previous studies mainly focused on the bearing characteristic of the valve plate/cylinder block pair, but the spline coupling also plays a key role in the undesired cylinder block tilt, which has been little studied. A theoretical model for the rotating assembly is pres...  相似文献   

2.
The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas.Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB(hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.  相似文献   

3.
《中国航空学报》2016,(3):596-607
To analyze the parachute dynamics and stability characteristics of precision airdrop system,the fluid–structure interaction(FSI) dynamics coupling with the flight trajectory of a parachute–payload system is comprehensively predicted by numerical methods.The inflation behavior of a disk-gap-band parachute is specifically investigated using the arbitrary Lagrangian–Euler(ALE) penalty coupling method.With the available aerodynamic data obtained from the FSI simulation,a nine-degree-of-freedom(9DOF) dynamic model of a parachute–payload system is built and solved to simulate the descent trajectory of the multi-body dynamic system.Finally,a linear five-degree-of-freedom(5DOF) dynamic model is developed,the perturbation characteristics and the motion laws of the parachute and payload under a wind gust are analyzed by the linearization method and verified by a comparison with flight test data.The results of airdrop test demonstrate that our method can be further applied to the guidance and control of precision airdrop systems.  相似文献   

4.
A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces of a roller bearing under four-dimensional loads and establishes 4-DOF dynamics equations of a rotor roller bearing system. The methods of Newmark-β and of Newton-Laphson are used to solve the nonlinear equations. The dynamics behaviors of a rigid rotor system are studied through the bifurcation, the Poincar è maps, the spectrum diagrams and the axis orbit of responses of the system. The results show that the system is liable to undergo instability caused by the quasi-periodic bifurcation, the periodic-doubling bifurcation and chaos routes as the rotational speed increases. Clearances, outer race waviness, inner race waviness, roller waviness, damping, radial forces and unbalanced forces-all these bring a significant influence to bear on the system stability. As the clearance increases, the dynamics behaviors become complicated with the number and the scale of instable regions becoming larger. The vibration frequencies induced by the roller bearing waviness and the orders of the waviness might cause severe vibrations. The system is able to eliminate non-periodic vibration by reasonable choice and optimization of the parameters.  相似文献   

5.
With the high speed, the rotor of magnetically suspended permanent magnet synchronous motor(MSPMSM) suffers great thermal stress and mechanical stress resulting from the temperature rise problem caused by rotor losses, which leads to instability and inefficiency.In this paper, the mechanical–temperature field coupling analysis is conducted to analyze the relationship between the temperature field and structure, and multi-objective optimization of a rotor is performed to improve the design reliability and efficiency. Firstly, the temperature field is calculated by the 2 D finite element model of MSPMSM and the method of applying the 2 D temperature result to the 3 D finite element model of the motor rotor equivalently is proposed. Then the thermal–structure coupling analysis is processed through mathematic method and finite element method(FEM),in which the 3 D finite element model is established precisely in a way and approaches the practical operation state further. Moreover, the impact produced by the temperature and structure on the mechanical strength is analyzed in detail. Finally, the optimization mathematical model of the motor rotor is established with Sequential Quadratic Programming-NLPQL selected in the optimization scheme. Through optimization, the strength of the components in the motor rotor increases obviously and satisfies the design requirement, which to a great extend enhances the service life of the MSPMSM rotor.  相似文献   

6.
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual(GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor(HHT) time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC(Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel(LUSGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally,the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.  相似文献   

7.
Petri nets are graphical and mathematical tools that are applicable to many systems for modeling, simulation, and analysis. With the emergence of the concept of partitioning in time and space domains proposed in avionics application standard software interface(ARINC 653), it has become difficult to analyze time–space coupling hazards resulting from resource partitioning using classical or advanced Petri nets. In this paper, we propose a time–space coupling safety constraint and an improved timed colored Petri net with imposed time–space coupling safety constraints(TCCP-NET) to fill this requirement gap. Time–space coupling hazard analysis is conducted in three steps: specification modeling, simulation execution, and results analysis. A TCCP-NET is employed to model and analyze integrated modular avionics(IMA), a real-time, safety-critical system. The analysis results are used to verify whether there exist time–space coupling hazards at runtime. The method we propose demonstrates superior modeling of safety-critical real-time systems as it can specify resource allocations in both time and space domains. TCCP-NETs can effectively detect underlying time–space coupling hazards.  相似文献   

8.
The microvibrations produced by momentum wheel assemblies(MWA) can degrade the performance of instruments with high pointing precision and stability on spacecraft.This paper concentrates on analyzing and testing the microvibrations produced by MWA.We analyze the disturbance sources produced by mass imbalance,structural mode,bearing irregularity and nonlinear stiffness,and random noise;then,test a well-balanced MWA by a highly sensitive measurement system consisting of a Kistler table and an optical tabletop.The results show that the test system has a resolution of less than 0.003 N in the frequency range of 3-300 Hz.The dynamic imbalance of the MWA cannot excite the radial rocking mode,but there are dynamic amplifications when the poly-harmonic disturbances intersect with the structural modes.Especially at high rotational speed(>3 000 rev/min),the main disturbance sources of the MWA come from the bearing irregularity interacting with radial translation mode in the high frequency range.Thus,bearing noise deserves more attention for the well-balanced MWA,and alternative of high quality bearings are proposed to reduce the microvibrations.  相似文献   

9.
This paper presents the model of calculating the total friction moment of space gyroscope ball bearings which usually work under ultra-low oscillatory motion and are very sensitive to the friction moment. The aim is to know the proportion of the friction moment caused by each frictional source in the bearing's total friction moment, which is helpful to optimize the bearing design to deduce the friction moment. In the model, the cage dynamic equations considering six degree-of-freedom and the balls dynamic equations considering two degree-of-freedom were solved.The good trends with different loads between the measured friction moments and computational results prove that the model under constant rate was validated. The computational results show that when the speed was set at 5 r/min, the bearing's maximum total friction moment when oscillation occurred was obviously larger than that occurred at a constant rate. At the onset of each oscillatory motion, the proportion of the friction moment caused by cage in the bearing's total friction moment was very high, and it increased with the increasing speed. The analyses of different cage thicknesses and different clearances between cage pocket and ball show that smaller thickness and clearance were preferred.  相似文献   

10.
Fatigue induced products generally bear fatigue loads accompanied by impact processes,which reduces their reliable life rapidly. This paper introduces a reliability assessment model based on a local stress–strain approach considering both low-cycle fatigue and high energy impact loads.Two coupling relationships between fatigue and impact are given with effects of an impact process on fatigue damage and effects of fatigue damage on impact performance. The analysis of the former modifies the fatigue parameters and the Manson–Coffin equation for fatigue life based on material theories. On the other hand, the latter proposes the coupling variables and the difference of fracture toughness caused by accumulative fatigue damage. To form an overall reliability model including both fatigue failure and impact failure, a competing risk model is developed. A case study of an actuator cylinder is given to validate this method.  相似文献   

11.
Current deformation measurement techniques suffer from limited spatial resolution. In this work, a highly accurate and high-resolution Horn–Schunck optical flow method is developed and then applied to measuring the static deformation of a birdlike flexible airfoil at a series of angles of attack at Reynolds number 100,000 in a low speed, low noise wind tunnel. To allow relatively large displacements, a nonlinear Horn–Schunck model and a coarse-to-fine warping process are adopted. To preserve optical flow discontinuities, a nonquadratic penalization function, a multicue driven bilateral filtering and a principle component analysis of local image patterns are used.First, the accuracy and convergence of this Horn–Schunck technique are verified on a benchmark.Then, the maximum displacement that can be reliably calculated by this technique is studied on synthetic images. Both studies are compared with the performance of a Lucas–Kanade optical flow method. Finally, the Horn–Schunck technique is used to estimate the 3-D deformation of the birdlike airfoil through a stereoscopic camera setup. The results are compared with those computed by Lucas–Kanade optical flow, image correlation and numerical simulation.  相似文献   

12.
High-speed axial piston pumps are hydraulic power supplies for electro-hydrostatic actuators(EHAs). The efficiency of a pump directly affects the operating performance of an EHA, and an understanding of the physical phenomena occurring in the cylinder/valve plate interface is essential to investigate energy dissipation. The effects of the splined shaft bending rigidity on the cylinder tilt behaviour in an EHA pump need to be considered, because the deflection and radial expansion of a steel shaft rotating at a high speed cannot be ignored. This paper proposes a new mathematical model to predict the cylinder tilt behaviour by establishing a quantitative relationship between the splined shaft deflection, the cylinder tilt angle, and the tilt azimuth angle. The moments exerted by the splined shaft are included in the equilibrium equation of the cylinder. The effects of solid and hollow splined shafts equipped in an EHA pump prototype are compared at variable speeds of 5000–10,000 r/min. With a weight saving of 29.7%, the hollow shaft is experimentally found to have almost no influence on the volumetric efficiency, but to reduce the mechanical efficiency by 0.6–2.4%. The results agree with the trivial differences of the simulated central gap heights of the interface between the two shafts and the enlargement of the simulated tilt angles by the hollow shaft. The findings could guide designs of the cylinder/valve plate interface and the splined shaft to improve both the efficiency and power density of an EHA pump.  相似文献   

13.
Based on the fundamental equations of piezoelasticity of quasicrystal media, using the symmetry operations of point groups, the linear piezoelasticity behavior of one-dimensional(1D)hexagonal quasicrystals is investigated and the piezoelasticity problem of 1D hexagonal quasicrystals is decomposed into two uncoupled problems, i.e., the classical plane elasticity problem of conventional hexagonal crystals and the phonon–phason-electric coupling elasticity problem of1 D hexagonal quasicrystals.The final governing equations are derived for the phonon–phasonelectric coupling anti-plane elasticity of 1D hexagonal quasicrystals.The complex variable method for an anti-plane elliptical cavity in 1D hexagonal piezoelectric quasicrystals is proposed and the exact solutions of complex potential functions, the stresses and displacements of the phonon and the phason fields, the electric displacements and the electric potential are obtained explicitly.Reducing the cavity into a crack, the explicit solutions in closed forms of electro–elastic fields,the field intensity factors and the energy release rate near the crack tip are derived.  相似文献   

14.
Aerodynamic force can lead to the strong structural vibration of flying aircraft at a high speed. This harmful vibration can bring damage or failure to the electronic equipment fixed in aircraft. It is necessary to predict the structural dynamic response in the design course. This paper presents a new numerical algorithm and scheme to solve the structural dynamics responses when considering fluid–structure interaction(FSI). Numerical simulation for a free-flying structural model in transonic speed is completed. Results show that the small elastic deformation of the structure can greatly affect the FSI. The FSI vibration tests are carried out in a transonic speed windtunnel for checking numerical theory and algorithms, and the wind-tunnel test results well accord with that of the numerical simulation. This indicates that the presented numerical method can be applied to predicting the structural dynamics responses when containing the FSI.  相似文献   

15.
This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation(RTE) considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method(FVM) to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6 μm. Conditions at wavelengths 2.7 μm and 4.3 μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the hightemperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al_2O_3 particles shows spectral continuity of gray media.Spectral radiation intensity of a computed solid rocket plume's high temperature core increases significantly in peak radiation spectra of plume gases CO and CO_2. Al_2O_3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7–3.0 μm and 4.2–4.6 μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.  相似文献   

16.
This paper seeks to outline a novel three-layer model and a new birth–death element solution technique to evaluate static strength of notched metallic panel repaired with bonded composite patch and to optimize material parameters. The higher order 3D, 8-node isotropic solid element and 8-node anisotropic layered solid element with three degrees of freedom per node are respectively implemented to model substrate panel, adhesive layer and composite patch to establish three-layer model of repaired panel. The new solving technique based on birth–death element is developed to allow solution of the stress pattern of repaired panel for identifying failure mode. The new model and its solution are used to model failure mode and residual strength of repaired panel, and the obtained results have a good agreement with the experimental findings. Finally, the influences of material parameter of adhesive layer and composite patch on the residual strength of repaired panel are investigated for optimizing material properties to meet operational and environmental constraints.  相似文献   

17.
Experimental study on combustion characteristics of Chinese RP-3 kerosene   总被引:1,自引:0,他引:1  
《中国航空学报》2016,(2):375-385
In order to illustrate the combustion characteristics of RP-3 kerosene which is widely used in Chinese aero-engines, the combustion characteristics of RP-3 kerosene were experimentally investigated in a constant volume combustion chamber. The experiments were performed at four different pressures of 0.1 MPa, 0.3 MPa, 0.5 MPa and 0.7 MPa, and three different temperatures of 390 K,420 K and 450 K, and over the equivalence ratio range of 0.6–1.6. Furthermore, the laminar combustion speeds of a surrogate fuel for RP-3 kerosene were simulated under certain conditions. The results show that increasing the initial temperature or decreasing the initial pressure causes an increase in the laminar combustion speed of RP-3 kerosene. With the equivalence ratio increasing from 0.6 to 1.6, the laminar combustion speed increases initially and then decreases gradually.The highest laminar combustion speed is measured under fuel rich condition(the equivalence ratio is 1.2). At the same time, the Markstein length shows the same changing trend as the laminar combustion speed with modification of the initial pressure. Increasing the initial pressure will increase the instability of the flame front, which is established by decreased Markstein length. However, different from the effects of the initial temperature and equivalence ratio on the laminar combustion speed,increasing the equivalence ratio will lead to a decrease in the Markstein length and the stability of the flame front, and the effect of the initial temperature on the Markstein length is unclear. Furthermore, the simulated laminar combustion speeds of the surrogate fuel agree with the corresponding experimental datas of RP-3 kerosene within 10% deviation under certain conditions.  相似文献   

18.
《中国航空学报》2016,(6):1541-1552
Rotor airfoil design is investigated in this paper. There are many difficulties for this high-dimensional multi-objective problem when traditional multi-objective optimization methods are used. Therefore, a multi-layer hierarchical constraint method is proposed by coupling principal component analysis (PCA) dimensionality reduction and e-constraint method to translate the orig-inal high-dimensional problem into a bi-objective problem. This paper selects the main design objectives by conducting PCA to the preliminary solution of original problem with consideration of the priority of design objectives. According to the e-constraint method, the design model is estab-lished by treating the two top-ranking design goals as objective and others as variable constraints. A series of bi-objective Pareto curves will be obtained by changing the variable constraints, and the favorable solution can be obtained by analyzing Pareto curve spectrum. This method is applied to the rotor airfoil design and makes great improvement in aerodynamic performance. It is shown that the method is convenient and efficient, beyond which, it facilitates decision-making of the high-dimensional multi-objective engineering problem.  相似文献   

19.
A numerical model for bird strike on sidewall structure of an aircraft nose   总被引:3,自引:2,他引:1  
In order to examine the potential of using the coupled smooth particles hydrodynamic(SPH) and finite element(FE) method to predict the dynamic responses of aircraft structures in bird strike events, bird-strike tests on the sidewall structure of an aircraft nose are carried out and numerically simulated. The bird is modeled with SPH and described by the Murnaghan equation of state, while the structure is modeled with finite elements. A coupled SPH–FE method is developed to simulate the bird-strike tests and a numerical model is established using a commercial software PAM-CRASH. The bird model shows no signs of instability and correctly modeled the break-up of the bird into particles. Finally the dynamic response such as strains in the skin is simulated and compared with test results, and the simulated deformation and fracture process of the sidewall structure is compared with images recorded by a high speed camera. Good agreement between the simulation results and test data indicates that the coupled SPH–FE method can provide a very powerful tool in predicting the dynamic responses of aircraft structures in events of bird strike.  相似文献   

20.
To reasonably implement the reliability analysis and describe the significance of influencing parameters for the multi-failure modes of turbine blisk, advanced multiple response surface method(AMRSM) was proposed for multi-failure mode sensitivity analysis for reliability. The mathematical model of AMRSM was established and the basic principle of multi-failure mode sensitivity analysis for reliability with AMRSM was given. The important parameters of turbine blisk failures are obtained by the multi-failure mode sensitivity analysis of turbine blisk. Through the reliability sensitivity analyses of multiple failure modes(deformation, stress and strain) with the proposed method considering fluid–thermal–solid interaction, it is shown that the comprehensive reliability of turbine blisk is 0.9931 when the allowable deformation, stress and strain are3.7*10~(-3)m, 1.0023*10~9 Pa and 1.05*10~(-2)m/m, respectively; the main impact factors of turbine blisk failure are gas velocity, gas temperature and rotational speed. As demonstrated in the comparison of methods(Monte Carlo(MC) method, traditional response surface method(RSM), multiple response surface method(MRSM) and AMRSM), the proposed AMRSM improves computational efficiency with acceptable computational accuracy. The efforts of this study provide the AMRSM with high precision and efficiency for multi-failure mode reliability analysis, and offer a useful insight for the reliability optimization design of multi-failure mode structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号