首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
环形级间驻涡燃烧室壁温分布试验   总被引:5,自引:5,他引:0  
通过对环形驻涡燃烧室进行壁温分布试验研究,可以考察燃烧室的冷却和进气结构是否存在问题,为后续的燃烧室强度计算提供依据.试验结果表明,各工况条件下燃烧室的壁温均未超过材料的上限值,燃烧室可以长期正常工作;燃烧室的最高壁温出现在凹腔前壁面下部或凹腔上壁面中部;燃烧室壁温受主流气量、凹腔进气量、供油量的影响较大,受蒸发管蒸发用气温度的影响较小.   相似文献   

2.
驻涡燃烧室凹腔温度变化规律及气量分配   总被引:4,自引:2,他引:2  
通过对单双涡燃烧室进行热态试验研究,研究余气系数、进口气流参数对凹腔壁温分布的影响,并通过三维数值模拟对燃烧室及凹腔气流量进行计算,得到壁温分布规律,为燃烧室材料选择以及气量分配的后续优化做好铺垫.试验结果表明,单涡试验件的最高壁温出现在凹腔后壁面;燃烧室余气系数变化改变了双涡试验件最高壁温的位置;数值模拟结果比较准确的得到了驻涡燃烧室的气流量分布.  相似文献   

3.
油气匹配及后体进气量对TVC燃烧性能的影响   总被引:2,自引:1,他引:1  
针对一种以煤油为燃料的驻涡燃烧室(TVC),在前期研究的基础上对其前体油气匹配进行几种结构改进,并在试验中重点进行油气匹配和后体进气量的改变对燃烧室燃烧性能的影响.针对其应用于涡轮前及涡轮间二级燃烧的前景,试验中驻涡燃烧室仅采用凹腔供油.试验结果表明,采用改进后供油蒸发管的燃烧效率比改进前提高了12%;在试验条件下,当凹腔当量比小于1.5时燃烧效率达到95%以上.各个方案在不同工况下,出口热点温度分布系数f在0.050.015之间.   相似文献   

4.
针对一种以煤油为燃料的单驻涡燃烧室,在前期研究的基础上针对驻涡燃烧室可应用于级间燃烧的情况进行了研究.试验中对仅采用凹腔供油的单驻涡燃烧室的点火及贫油熄火进行了研究.结果表明,掺混进气温度增加可以最大降低点火油气比20%左右,拓宽贫熄边界30%左右;对于这种结构和进气条件的燃烧室,主流气量则存在一个最佳值,使得点火总油气比最小.进口流速达到马赫数0.59时点火开始变得困难.   相似文献   

5.
双涡/贫油驻涡燃烧室的贫油熄火特性试验   总被引:3,自引:2,他引:1  
对在燃烧室进口高速气流条件下工作的贫油双涡结构驻涡燃烧室,通过改变主流马赫数与温度和改变其凹腔几何尺寸进行贫油熄火性能试验.试验结果表明:①随着主流马赫数的增加,贫油熄火余气系数减小,主流速度是影响贫油熄火性能的最主要因素.②主流温度的升高对拓宽燃烧边界有利,但是在达到600K后,对贫油熄火余气系数的影响逐渐减弱.③双涡试验件后体进气量的增加可以使贫油熄火性能变差.④不同凹腔宽深比对贫油熄火余气系数的影响很大,综合各个试验件结果,深宽比为0.88的双涡试验件的贫油熄火性能最好.   相似文献   

6.
驻涡燃烧室燃烧组织方式和设计思路分析   总被引:3,自引:0,他引:3  
驻涡燃烧室是新型高效、结构紧凑的燃烧室.基于前期技术研究基础,对其燃烧组织方式和影响性能的关键技术作了分析:驻涡燃烧室采用驻涡火焰稳定技术,通过分级供油、分区燃烧技术满足发动机日益宽广的工作范围.驻涡燃烧室的主燃区主要功能是实现高效燃烧.驻涡燃烧室可以组合设计成RQL和LPP结合的高效低污染燃烧室.影响驻涡燃烧室性能的因素主要包括驻涡区的结构参数、油气方案,驻涡区和主流的联焰,主流供油方案,流量分配和内外环流道的结构参数上.  相似文献   

7.
某驻涡燃烧室性能数值模拟   总被引:1,自引:0,他引:1  
设计了适用于某驻涡燃烧室模型的喷油杆,对该喷油杆进行了冷态雾化试验,在不同的气液比、不同的气体和液体压力下研究了喷油杆的雾化性能.通过计算流体动力学(CFD)方法对驻涡燃烧室进行了冷态和热态的数值模拟,得到了燃烧室内部的速度场、温度场和质量分数分布.计算结果表明:该燃烧室设计合理,结构紧凑,燃料燃烧充分,凹腔试验件的壁温分布较为理想.得到了总压损失和出口温度分布的变化规律:燃烧室的总压损失略偏大,出口温度分布较为均匀.并对出口温度分布的规律进行了试验验证,研究结果可以为驻涡燃烧室的工程应用提供参考.   相似文献   

8.
凹腔油气匹配对驻涡燃烧室点火性能影响试验   总被引:9,自引:5,他引:4       下载免费PDF全文
邢菲  樊未军  柳杨  孔昭健  杨茂林 《推进技术》2008,29(4):412-416,421
针对一种以煤油为燃料的驻涡燃烧室,在前期研究的基础上对其前体油气匹配进行几种结构改变,探讨驻涡燃烧室头部油气匹配及后体气量变化时对其点火熄火的影响。对仅采用凹腔供油的驻涡燃烧室的贫油点火及贫油熄火特性进行了试验研究表明,随后体气量增加,总的贫油点火油气比先下降后上升,绝大部分工况下,总的贫油点火油气比在0.04以下;贫熄总油气随主流气量的减小先增大后减小;各个方案熄火总油气比都在0.004以下;凹腔前体进气温度的提高有利于驻涡燃烧室的点火熄火性能。  相似文献   

9.
在单涡燃烧室研究的基础上,对双涡燃烧室进行出口温度分布试验研究,得到了影响出口温度分布系数(OTDF)的因素如下:①随着主流马赫数的增加,出口温度分布系数减小;②主流温度对出口温度分布影响较大,出口温度分布系数随主流温度的增加而减小;③随着余气系数的增大,出口温度分布系数都有先增大后趋于平缓或减小的过程;④不同的凹腔结构对出口温度分布系数的影响很大,综合各个试验件结果,深宽比为0.8,后体进气方式为开槽进气的双1试验件的出口温度分布系数最小.   相似文献   

10.
采用蒸发管供油的驻涡燃烧室点火及贫油熄火特性   总被引:2,自引:1,他引:1  
为了研究驻涡燃烧室拓宽燃烧边界的能力, 设计了一种驻涡燃烧室实验件, 并对其点火性能和贫油熄火特性进行了实验研究.驻涡燃烧室采用汽化器和蒸发管的组合作为供油方式, 以煤油为燃料, 实验中改变燃烧室的进口条件, 测试其点火极限和贫熄极限.实验结果表明, 采用蒸发管供油驻涡燃烧室具有良好的点火特性和贫油熄火性能.   相似文献   

11.
为研究驻涡燃烧室在前钝体燃料喷射状况下的燃烧性能,采用3维数值仿真模拟方法,对驻涡燃烧室前钝体燃料喷射 状况下的燃烧效率及燃烧室性能与无前钝体燃料喷射状况下的燃烧性能进行了对比分析,并对驻涡燃烧室的冷流以及燃烧状态 下的燃烧室性能进行了系统研究。燃烧室温度分布表明:前钝体顶部燃料喷射在0.2~0.7的喷射系数范围内,缩短了燃烧室火焰 长度,提高了燃烧室在相同轴向长度下的燃烧效率,使燃烧室更加紧凑;驻涡燃烧室前钝体顶部燃料喷射孔的孔径在一定范围内 的变化对燃烧室的燃烧效率、出口温度分布系数以及总压损失影响较小。  相似文献   

12.
本文采用实验方法对单涡贫油驻涡燃烧室的出口温度分布的影响因素进行了研究,通过分析实验数据得到了如下结论:(1)凹腔气量对出口温度分布影响较大。随着凹腔气量的增加,出口温度分布系数先增加后减小,这与掺混射流的穿透深度有关。(2)燃油掺混温度对出口温度分布的影响也较大。掺混温度小于423K时出口温度分布系数偏高,且随着温度升高略有增加。温度高于423K时出口温度分布系数开始减小。(3)燃油供油量对出口温度分布也有重要影响。当燃油量增加时,出口温度分布系数随之增加。  相似文献   

13.
Experimental Study on Emission Performance of an LPP/TVC   总被引:2,自引:0,他引:2  
A key issue in the commercial aircraft engine design is environmental acceptability, and designers are continually challenged to reduce emissions. In this paper, an experimental investigation is performed to evaluate the emission performance of a liquid-fueled trapped vortex combustor (TVC) under lean premixed prevaporized (LPP) mode. When operating as an LPP system, a TVC is fueled both in the cavities and in the main stream. The correlations between the emission performance and the total excess air ratio, the positions (4 positions) of the fuel injectors in the main stream, and the inlet temperature are obtained. Experi- mental results show that both the volume concentrations of unburnt hydrocarbon (UHC) and NOx (NO, NO2 usually grouped together as NOx) increase with the increase of total excess air ratio from 1.5 to 3.0; the emission performance relies heavily on the position of the main stream injector, and the best performance is achieved at Position 4 in the experiments; the increase of the inlet temperature impacts on the emission performance positively; the smallest volume concentrations of UHC and NOx obtained in the experiment are 94×10 6 and 2.3×10 6 respectively. This paper validates the feasibility of low emissions for an LPP/TVC and provides a reference for further optimization of TVCs.  相似文献   

14.
驻涡燃烧室凹腔供油位置对流场影响的PIV实验   总被引:2,自引:1,他引:1  
采用PIV(particle image velocimetry)技术,对凹腔供油位置不同时凹腔内的冷态流场进行对比研究.通过分析不同来流速度对腔内涡的形成及其稳定性的影响,从而研究不同供油位置对涡稳定的影响.实验表明,供油位置在凹腔前体,油气掺混孔处的射流对涡有破坏,供油位置在凹腔后体,油气掺混孔处射流对涡没有破坏作用,在不考虑供油方式等因素的情况下,凹腔后体供油优于凹腔前体供油.研究结论可为该驻涡燃烧室进一步的热态燃烧性能实验研究提供依据.   相似文献   

15.
凹腔/支板结构亚燃冲压燃烧室性能   总被引:3,自引:1,他引:2       下载免费PDF全文
为了避免基于凹腔火焰稳定器的亚燃冲压燃烧室壁面喷注时燃料与主流空气掺混非均匀性问题和提高燃烧室的性能,提出在亚燃冲压燃烧室中使用支板喷注代替壁面喷注的方案,数值模拟了凹腔/支板结构亚燃冲压燃烧室中燃料分布及流场结构,并分析了支板结构对燃料空气混合及燃烧室性能的影响。研究表明:支板虽然使燃烧室出口的总压恢复系数相对于壁面喷注方式下的降低了63%,但能使燃料均匀分布于整个流道内,增强了燃料与空气掺混,使燃烧室出口的混合效率和燃烧效率分别提高了21.4%和20.5%。燃烧效率的提高弥补了采用支板导致的燃烧室内气流的额外总压损失所带来的机械能损失,使得支板喷注时燃烧室出口的比冲提高了39.6%。因此,在亚燃冲压燃烧室中设置凹腔/支板结构,有利于提高燃烧室整体性能。   相似文献   

16.
驻涡燃烧室凹腔流场结构实验   总被引:4,自引:2,他引:2       下载免费PDF全文
驻涡燃烧室采用凹腔结构稳定火焰,研究凹腔内不同燃料与空气喷射情况下的流场结构非常重要。采用粒子成像测速仪(PIV)测量了驻涡燃烧室凹腔在不同主流速度下的流场,并对比分析了凹腔进气结构分别为不开冷却缝及油气渗混孔、开冷却缝不开油气渗混孔、开冷却缝和后体油气渗混孔、开冷却缝和前体油气渗混孔时的流场结构。研究结果表明,不同主流速度下所设计的不同凹腔进气结构均能在腔内形成稳定的涡,冷却缝对流场的影响较小,凹腔油气掺混孔在开孔截面上对流场及涡核中心位置的影响较大。  相似文献   

17.
为了满足船舶燃气轮机污染物排放的需求,设计了一种低排放塔式分级燃烧室,并对其主燃级喷嘴进行结构优化,利用数值模拟方法详细研究了不同喷嘴结构下燃烧室的流场特性及性能参数。结果表明,主燃级由直射式喷嘴更换为空气雾化喷嘴时,可有效避免旋流器壁面燃油积碳;燃烧室内油气掺混水平提高,出口温度分布品质改善,出口NO和CO排放量分别降低71.4%和60%。针对空气雾化喷嘴,燃油管道出口与喷嘴出口之间的高度与其内径之比(H/D)对燃烧室油气分布特性和中截面温度分布的影响远高于其空气出口结构形式,H/D过大或过小时,油气掺混水平恶化,污染物排放量增加。燃烧室出口径向温度分布系数随H/D的增大而减小。综合分析燃烧室油气分布、温度分布和性能参数,确定最优喷嘴的H/D=2,空气出口结构为圆柱型。  相似文献   

18.
燃油分级比例对TAPS燃烧室性能的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
综合考虑燃烧室对低污染和出口温度分布的需求,对中心分级的TAPS燃烧室流量分配进行了设计和燃烧数值模拟,该流量分配方案采用了不同燃油分级比例。计算结果表明:燃油分级比例对TAPS燃烧室宏观流场结构改变不大,改变3级旋流的流量可影响燃烧室局部当量比,同时能够减小高温区,改善出口温度分布品质,从而大幅降低NOX和CO排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号