首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
航空发动机旋转帽罩结冰表面换热系数研究   总被引:3,自引:3,他引:0       下载免费PDF全文
旋转帽罩表面的对流换热系数是结冰、防冰研究的重要参数,旋转帽罩结冰模拟中对流换热量和蒸发量都需要已知对流换热系数。为了获取旋转帽罩表面的对流换热系数,采用数值模拟对旋转帽罩结冰表面的对流换热系数进行了研究。首先验证了网格与计算方法的合理性和可靠性,在此基础上,对影响表面换热的因素进行了分析,计算了不同转速、来流速度、来流温度对锥角40°,锥高176mm的旋转帽罩表面换热系数的影响。结果表明:锥尖区域,来流速度的影响与转速影响相比占主导;除锥尖外的其他区域,转速对换热系数的影响占据了主导地位;来流温度对整个表面的换热系数均有影响。采用不同工况下的数值模拟结果,在锥尖区域建立了来流雷诺数与努赛尔数之间的关联式;在除锥尖外的其他区域建立了旋转雷诺数与努赛尔数之间的关联式。  相似文献   

2.
来流参数对防热瓦横缝旋涡结构及热环境的影响   总被引:1,自引:0,他引:1  
针对高超声速飞行器表面缝隙内部流动,通过求解可压缩Navier-Stokes方程,自主研发了一套能够较好模拟缝隙流动特性的计算流体力学(CFD)软件。利用该软件研究了来流参数对防热瓦横缝旋涡结构及热环境的影响。计算结果表明:随着来流雷诺数的增加,缝内旋涡结构呈现主涡个数增多形态趋于饱满的变化趋势,缝隙壁面绝对热流和无量纲热流增加;随着来流马赫数的增加,缝内主涡个数、形态基本不变,但主涡旋转速度增加,缝隙壁面绝对热流增加,无量纲热流基本不变;随着来流迎角的增加(迎角较小时),缝内旋涡结构和热流变化规律基本与增加来流雷诺数相同。由此分析可知,涡量向下传递并形成旋涡的距离,即形成所谓"死水区"的深度,主要由来流雷诺数和来流迎角决定。  相似文献   

3.
畅然  刘高文  余祥仙  冯青 《推进技术》2022,43(4):224-233
为了得到高转速转静盘腔流动换热实验中的相似准则,在定几何、变物性、可压缩和有耗散的情况下,对转静盘腔中的控制方程进行无量纲化,得到了除无量纲位置外的8个无量纲准则数。并以高转速转静盘腔模型为基础,采用数值方法对影响发动机工况(高温)和实验工况(常温)换热相似性的主要无量纲准则数进行了研究。研究表明:流动雷诺数、旋转雷诺数、流动马赫数、旋转马赫数和转子表面温度与来流气流温度之比是影响换热相似性的主要因素。计算结果显示:在热边界条件相似时,仅需保证发动机状态与实验状态的雷诺数相等就可保证局部努塞尔数相同;仅需保证发动机状态与实验状态的马赫数相等就可保证绝热壁温分布相同;但只有保证实验状态和发动机状态的雷诺数和马赫数都相等时,无量纲换热量才保持一致。  相似文献   

4.
封严篦齿腔内流动及旋涡分布和顶板换热特性的实验研究   总被引:1,自引:0,他引:1  
自行设计了吸气式篦齿换热风洞并对篦齿腔内部旋涡分布及流场和篦齿顶板换热特性进行了详细的研究。测出了在不同雷诺数和齿隙比篦齿腔中旋涡分布和顶板换热规律。从机理上分析了雷诺数和齿隙比对篦齿腔内流动旋涡分布及顶板表面局部换热规律的影响。  相似文献   

5.
直通式封严篦齿内部流动和换热的实验研究   总被引:1,自引:2,他引:1       下载免费PDF全文
为了研究外界因素对高推动比航空发动机中密封装置性能的影响,介绍了在吸气式内流传热风洞实验台测量了不同雷诺数和不同齿顶厚和齿隙比的工况下对篦齿腔内部流动的影响规律, 并利用该实验台对篦齿顶板表面的换热特性进行了研究. 测量结果说明了在篦齿腔中旋涡的分布及雷诺数变化对旋涡分布的影响.并得出了在不同雷诺数和T/C工况下对篦齿顶板表面换热特性的影响  相似文献   

6.
星孔型装药发动机三维两相流场的数值模拟   总被引:6,自引:1,他引:6  
贺征  郜冶 《推进技术》2004,25(2):118-121
为了研究颗粒在星孔型装药固体火箭发动机燃烧室和喷管中的运动轨迹以及颗粒与发动机壁面的碰撞情况,针对可压两相流动,采用了高雷诺数下的k ε湍流模型和欧拉 拉格朗日两相流模型,用全速度SIMPLE方法对方程组进行求解,并用PSIC方法进行气固耦合计算。计算得出了流场内两相的速度、温度等参数的分布及多种情况下固体颗粒的运动轨迹。在燃气生成量确定的情况下,从距离喷管较近的某些位置进入流场的颗粒比较容易撞击壁面;颗粒的尺寸和局部产生的旋涡对颗粒的轨迹和碰撞也会产生较大的影响。  相似文献   

7.
航空发动机中直通式篦齿密封腔内流动和换热的实验研究   总被引:4,自引:1,他引:3  
作者自行设计了大尺寸吸气式篦齿换热风洞实验台并通过它对篦齿腔中的内部流场进行了详细的研究, 得出了篦齿腔中速度场和压力场及流场内部旋涡分布规律。同时测量了在不同雷诺数、齿顶厚和齿隙比工况下, 篦齿腔内二维流动状况及旋涡分布, 分析得出不同雷诺数和齿隙比对篦齿腔内部流场的影响。并且测量了篦齿顶板表面的温度和换热系数的分布, 得出雷诺数和齿顶厚与齿隙比对篦齿顶板局部换热规律的影响   相似文献   

8.
在大尺寸低速开式叶栅传热风洞中对一种高压涡轮导向叶片构成的直叶栅通道端壁表面的换热特性进行了试验研究。在雷诺数为 750 0 0~ 30 0 0 0 0的范围内,采用热膜法测量了端壁换热系数的分布,研究了Re数对叶栅端壁换热的影响规律;同时给出了端壁平均 St数与来流 Re数之间的准则关系式  相似文献   

9.
穹顶结构表面平均压力分布及绕流结构数值模拟   总被引:1,自引:0,他引:1  
通过商用软件Fluent求解Realizable形式的时均k-ε湍流模型,得到了穹顶结构煤场的绕流结构及表面平均压力分布,并结合流动分离、旋涡结构的特点对其平均风压分布规律进行了解释。最后通过参数变化,研究了来流边界条件、煤场钢混结构高度以及煤场侧窗开启状态对煤场顶部穹顶结构表面平均风压分布的影响。  相似文献   

10.
带射流的收缩型通道内部换热特性液晶瞬态实验   总被引:5,自引:0,他引:5  
将航空发动机进气道支板冲击腔简化和放大为一带射流的收缩型通道,并采用最新窄带热色液晶全表面瞬态测温技术对其内表面进行冲击换热实验,具体研究了射流雷诺数、孔径及孔间距变化对努赛尔数分布及大小的影响。实验结果表明:射流雷诺数的增大、孔径的增大及孔间距的减少均使通道内部换热得以加强,但努赛尔数分布的变化及平均努赛尔数的增幅不尽相同;并且侧壁换热受孔间距影响最大,前缘换热则受射流雷诺数的影响最大。  相似文献   

11.
航空发动机帽罩热气膜防冰的加热特性   总被引:1,自引:1,他引:0  
针对复合材料帽罩采用的一种热气膜防冰系统,采用计算流体力学方法研究了其内部冲击换热和外部气膜加热效果。发展了二维轴对称计算方法并与全三维计算结果进行了对比,搭建了热气吹风实验台,利用红外测温仪和热电偶测量帽罩温度,验证了数值计算方法。全面研究了不同射流雷诺数、相对冲击距和气膜缝结构参数对热气加热特性的影响,结果表明:增大射流雷诺数有利于提高内部冲击换热效果和外部气膜加热效果;最佳相对冲击距随射流雷诺数的增大而增大,射流雷诺数为10000~40000范围内最佳相对冲击距在5~8内取得;气膜射流能大幅提高缝后外壁面温度,加热效率与气膜缝宽和位置有关,前缘开设的气膜缝还会提升前缘冲击换热效果。   相似文献   

12.
双层壳型涡轮叶片中冲击旋流换热增益效果试验   总被引:4,自引:3,他引:1       下载免费PDF全文
以双层壳型涡轮叶片内冷通道中旋流换热特性为研究对象,采用热膜法,对双层壳型冷却结构中的狭小受限通道中,旋流作用下换热特性的变化规律开展了细致的试验研究。重点分析了冷却空气的旋流作用对换热的强化增益效果。试验中通过改变冲击Re数(10 000~20 000),冲击间距和冲击孔直径之比H/D(0.35~1.7)等参数,研究了其对旋流的形成及内表面局部换热系数的影响规律。研究发现:由于双层壳型叶片内冷通道的空间受限,冷却空气在通道内形成了旋流结构,该旋流结构显著影响了内表面的局部换热系数并可以有效提高换热效果。研究结果表明:内表面局部换热系数对冲击间距和冲击孔直径之比H/D最为敏感,对于不同冲击Re数,存在一个最佳的H/D使得旋流换热增益效果达到最大(Re=10 000时,最佳H/D为0.95;Re=15 000,20 000,最佳H/D=0.63)。  相似文献   

13.
余鲲  罗翔  闻洁 《航空动力学报》2011,26(9):1975-1980
改进瞬态实验方法,使实验件的初始温度在上下表面间形成线性分布,降低了对实验设备和操作的要求.以此方法研究涡轮转子端壁的流动和换热情况,实验结果表明,端壁表面的换热强度受来流雷诺数和端壁二次流结构的共同影响.来流雷诺数增加,端壁整体换热增强;二次流的影响,导致端壁表面存在若干局部传热强化的区域,包括前缘马蹄涡形成的区域、马蹄涡分支覆盖的区域、靠近吸力面一侧通道涡生成的区域、以及角涡产生的位置.实验测得的结果符合对端壁二次流结构的现有认识.   相似文献   

14.
叶片前缘旋流和常规冲击对比数值研究   总被引:3,自引:2,他引:1  
刘高文  薛彪  彭力  夏全忠 《推进技术》2011,32(4):576-580,585
为了寻求更好的叶片前缘内冷结构,对旋流冲击和常规冲击的流动和传热特性进行了数值模拟,对比研究了二者的涡流结构、传热强度、流动阻力、综合传热性能和热均匀性,研究了通道Re数和冲击间距对这些参数的影响。结果表明旋流冲击形成的旋涡有利于传热的增强和热均匀性的提高。在所研究的Re数(2×104~7.78×104)和冲击间距(3.3~5倍直径)范围内,旋流冲击与常规冲击相比平均传热增强18%~34%,增幅随Re数和冲击间距的增大而增大;流阻增大10%~26%,增幅随Re数和冲击间距的增大而减小;综合传热性能增强20%左右;热均匀性提高60%左右。  相似文献   

15.
采用数值模拟的方法对冲击腔上游冲击产生的横流对下游冲击射流的影响进行了研究.结果表明,①随横流增大,射流冲击靶面平均努塞尔数呈现复杂的变化规律.②横流对冲击靶面平均努塞尔数的影响主要体现在两个方面:随横流雷诺数增大,冲击下游的拉伸涡对强度呈现先增大后减小的趋势,对换热的影响也是先增大后减小;横流使冲击射流偏移,导致高换...  相似文献   

16.
为了提高航空发动机帽罩冲击防冰结构的设计分析水平,对单孔冲击式帽罩前缘结构的流动换热特性进行数值研究,分析了不同冲击孔径与不同冲击雷诺数对帽罩前缘速度流场、换热系数与努塞尔数的分布规律。结果表明:在冲击雷诺数一定的条件下,冲击孔径越大,射流核心速度和前缘壁面附近的气流速度越小,前缘冲击区形成的涡流团越大,当孔径D=6 mm时,小孔径冲击下前缘区整体换热效果不如大孔径的,而在滞止区的换热效果则要优于大孔径的;当D>12 mm时,孔径大小对壁面换热基本没有影响;在冲击孔径相同时,增大冲击雷诺数使得冲击射流、前缘壁面附近及侧壁曲面通道内的气流流速增大,冲击区内的涡流团则逐渐减小;冲击雷诺数的增大也增强了前缘冲击区的换热特性。  相似文献   

17.
杨珂  闻洁  徐国强 《航空动力学报》2016,31(11):2567-2574
应用k-ω SST(shear stress transport)湍流模型,计算分析旋转U型通道在不同进口雷诺数(10000~60000)和高旋转数(0~2.013)范围内的流动与换热特性.结果表明:在静止和旋转状态下,进口雷诺数越大,努塞尔数越大.相比于同一工况下的静止状态,旋转显著增强了径向外流直通道的换热强度,径向内流直通道换热强度增大不明显.旋转数对U型通道换热的影响主要通过改变哥氏力和浮升力的大小.受哥氏力的影响,径向外流直通道后缘面换热增强,前缘面换热减弱.浮升力诱发了近壁面的流动分离,使得径向外流直通道前缘面不同位置处的换热强度随旋转数的增加而先减小后增大,计算得到的临界旋转数变化规律与实验测量结果保持一致,即无量纲距离参数与临界旋转数的乘积为定值.   相似文献   

18.
基于相似理论,对简化的层板冷却涡轮叶片前缘放大模型内部的流动与传热特性进行实验研究,对比了无绕流柱和带菱形扰流柱两种实验模型的流动阻力系数、靶面温度和表面传热系数的分布.实验中采用红外热像技术测量换热面的温度,采用ANSYS软件计算换热面的局部热流密度.结果表明:两种模型的流动阻力随进气雷诺数逐渐增大,带菱形扰流柱模型的流动阻力总体上较大;靶面局部表面传热系数的分布特征基本相同,带菱形扰流柱模型的局部表面传热系数比无扰流柱模型的稍高;靶面平均表面传热系数的差别很小,相同进气雷诺数下带菱形扰流柱模型的平均表面传热系数值最多大7%.   相似文献   

19.
轴承腔内壁与油膜换热的数值模拟与试验   总被引:2,自引:0,他引:2  
航空发动机后轴承腔内壁与滑油的换热分析是轴承腔热防护结构设计的基础。对航空发动机轴承腔内壁换热模拟试验件开展试验与数值模拟研究,得到了滑油油膜对轴承腔内壁的换热影响。通过测量试验件外壁面、内壁面以及滑油油膜的温度得到了试验件内壁面换热热流密度与换热系数的分布;结合CLSVOF(Coupled Level Set and Volume Of Fluid)油/气两相流以及热-流-固耦合计算方法对试验件进行了换热分析,并将内壁对滑油的局部热流量的计算结果与试验结果进行了对比,结果显示两者在各个工况下均吻合较好。通过将局部换热系数计算值与当地的滑油流动雷诺数Rel进行对比分析,结果显示内壁局部努赛尔数Nuw与Rel的0.7次方成正比关系。另外,对转速对换热的影响进行分析得到Nuw与旋转雷诺数Re_(rot)的0.345次方呈正比关系。  相似文献   

20.
将GAO-YONG湍流模型应用于湍流传热的研究,分别计算了平板剪切湍流和二维平面冲击射流的湍流传热问题.边界层剪切湍流流动与换热的计算表明:与传统的湍流模型不同,GAO-YONG湍流模型不需要对近壁区域做任何特殊处理(比如壁面函数、低Reynolds数修正等)即可模拟出从壁面到主流区的全部流动与传热情况;另外,对于冲击射流Nusselt数的模拟也得到了与实验符合较好的计算结果,准确地捕捉到了2种冲击高度下流场换热的不同特征,表明了GAO-YONG湍流模型能够较高精度地计算湍流换热.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号