首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
高压压气机径向间隙分析   总被引:1,自引:1,他引:0       下载免费PDF全文
于洋  刘巧英  沈倍毅  高星 《推进技术》2013,34(3):339-346
针对航空发动机高压压气机,综合考虑气动载荷、离心力载荷、温度载荷耦合作用,建立了压气机径向间隙分析模型,获得了3个典型工况下的流场特征以及叶片的变形、应力分布,高压压气机转子叶尖径向间隙沿轴向变化的分布规律以及轴流压气机转子与机匣的间隙范围.计算结果显示在设计点和转速最高点,斜流压气机转子叶尖与机匣发生碰磨,与试验结果一致,验证了计算方法的正确性,也为建立合理有效的压气机径向间隙分析方法提供了思路.  相似文献   

2.
设计了实际尺寸高压涡轮(HPT)主动间隙控制(ACC)系统机匣组件试验件,模拟ACC系统在高温、高压条件下的工作状态,研究了HPT机匣的温度分布规律,以及机匣温度随冷气雷诺数的响应特性,验证了供气总管及冲击冷却管的流动特性。结果显示:供气总管压力分布均匀,冲击冷却管从进气端至封闭末端的沿程压力逐渐升高,但管内压力随冲击冷却管开孔面积比的增大而接近一致;当ACC系统不工作和工作时,机匣周向单点温度与平均温度最大相对偏差分别为48%和58%;而在ACC系统工作时,随冷气雷诺数的变大,涡轮外机匣温度能显著降低,试验工况中,机匣各冷却部位平均温度的降幅可达16%~37%,达到预期效果。基于试验测试数据,验证并改进了HPT机匣组件换热分析模型,该模型具有较高精度和良好适用性。   相似文献   

3.
间隙主动控制系统中冷却空气管换热特性实验研究   总被引:7,自引:5,他引:2       下载免费PDF全文
针对民用发动机低压涡轮主动间隙控制系统中冷却空气管气流冲击机匣的典型结构,建立1∶1简化试验模型并开展换热特性试验研究。试验中依据相似准则确定试验工况,通过改变进口Re数、孔排方式、冲击间距(即冷却管和机匣间距)等参数,分析了机匣表面局部和平均Nu数的分布和变化规律。试验中发现尽管冷却管上冲击孔沿周向均匀分布,机匣表面周向温度却存在明显的差异,对应局部换热系数相差可达3倍以上。试验数据表明:由于冷却管冲击孔周向出流流量不均匀,造成机匣表面局部Nu数随着对应圆心角的增加而逐步变大;当进口Re数增加后,冲击板面局部及平均Nu数均随之增大;试验工况下,机匣表面局部及平均Nu数均随冲击间距、冲击孔间距与孔径比(L/d)的增加而减小。  相似文献   

4.
基于主动间隙控制系统的高压涡轮机匣试验   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究某型主动间隙控制(Active Clearance Control,ACC)系统的工作特性,设计并搭建了高压涡轮机匣试验台。依据高压涡轮机匣的热环境分析结论,采用了控制温度的方式模拟热源。通过对该试验方案的误差分析及不同工况的重复性试验分析,对该试验方案进行了验证,并进行了有无ACC系统、不同热源温度下机匣温度场与位移场的测试。试验结果表明:在ACC系统未作用时,机匣径向热变形随温度增加近似线性增长,每升高1℃机匣径向热变形在3.5μm左右;在ACC系统作用时,温度场在周向出现"山峰"分布,位移场的周向不均度增大,最大周向不均匀度为335μm,并观察到壁面流区与泉流区呈现"IOI"状的交错分布现象。通过对不同工况下试验数据的分析,得出了ACC系统工作效率与机匣热变形率呈负相关的结论。  相似文献   

5.
叶尖间隙控制系统悬浮管换热单元数值研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了改善机匣内横流影响,提高冷气的热沉利用效果,设计了一种叶尖间隙控制系统新型悬浮管式冷却结构,并抽象出典型换热单元开展数值模拟研究。重点关注了悬浮管上冷却孔冲击雷诺数、冲击孔间距、冷却空气出流方式等对该冷却结构流动换热特性的影响。研究中发现:悬浮管相邻冲击射流之间会相互影响并形成"喷泉流"现象;随着悬浮管冷却孔冲击雷诺数减小、冲击孔间距增大,冲击靶面换热效果降低,"喷泉流"现象不再明显。同时由于悬浮管本体及盖板的空间限制作用,冲击腔中会形成沿周向、轴向的横流。研究结果表明,当机匣侧方位冷气出流时,机匣表面沿轴向的横流最为明显。相较于机匣侧面出流,盖板垂直出流以及盖板垂直/机匣侧面同时出流时,两高肋之间区域的换热得到明显加强。其中垂直出流时增幅最大,可达20%。  相似文献   

6.
为解决多斜孔壁应用于实际燃烧室时容易出现前端冷却效果较弱的问题,采用多斜孔非均匀孔排设计,对壁面前端的开孔分布规律进行了重点优化,采用数值模拟方法研究了不同孔排规律对冷却效果的影响.结果表明,非均匀孔排布设计可使流量分配规律得到优化,挖掘了壁面后端冷却气的冷却潜力,改善了壁面温度的均匀性,且控制在材料许用温度范围内;轴向温度梯度有所减小,同时冷却空气量明显减少;在开孔面积一定的前提下,采用增加孔数,减小孔径的方式能获得较佳的冷却效果.  相似文献   

7.
风兜面积对气冷喷油杆性能影响的数值研究   总被引:3,自引:0,他引:3  
以某型涡扇发动机加力燃烧室气冷喷油杆为研究对象,在梯形截面的风兜下底和高度不变的情况下,通过改变上底长度得到一系列不同风兜面积的几何模型,综合考虑外流场对气冷喷油杆内部流动和换热特性的影响,对其在巡航状态下进行了流/热/固耦合三维数值模拟研究,获得了不同风兜面积对气冷喷油杆引气率、冷却空气喷口流量分布、壁面平均冷却效果、壁面最高温度的影响规律.结果表明:引气率随风兜面积增大线性增大;喷油嘴凸台周围冷却空气喷口的流量沿气冷喷油杆内冷却空气流向呈二次曲线规律变化,且随风兜面积增大分布趋于均匀;随风兜面积增大,喷油杆、隔热套壁面平均冷却效果线性增大,壁面最高温度降低;有效抑制内涵高温燃气倒灌进入隔热套是避免喷油杆局部高温的关键.   相似文献   

8.
建立了反映短环形燃烧室掺混段壁面冷却空气对出口径向温度分布系数影响分析模型 ,导出了冷却空气量和径向温度分布系数的定量关系式 ,分析了影响规律。利用本文模型及计算方法 ,可由壁面冷却初步设计确定的掺混段壁面冷却空气量估算径向温度分布系数 ,或从满足径向温度分布系数指标的角度选取掺混段壁面冷却空气量。  相似文献   

9.
高压涡轮机匣加强肋表面换热特性试验   总被引:1,自引:0,他引:1       下载免费PDF全文
针对高压涡轮叶尖间隙主动控制机匣的多层结构,重点分析了机匣内部加强肋和安装螺栓共同组成的基本换热单元,利用热膜法研究了加强肋表面的局部和平均传热系数,得到了不同进气状态、加强肋高度对传热系数的影响规律。研究发现:冲击靶面传热系数随着冲击雷诺数的增长而增大,但传热系数的增长速率随着冲击雷诺数的增大而缓慢降低。3排冲击射流工况中,靠近出流位置的加强肋表面平均传热系数最高。试验结果表明,加强肋表面的传热系数受到加强肋高度和冲击雷诺数耦合作用。在高雷诺数时,增加加强肋高度带来的换热强化效果更加明显。   相似文献   

10.
为揭示叶片或机匣旋转条件和叶顶冷却对涡轮动叶气热性能的影响机理,选用LISA 1.5级涡轮动叶片,构建叶顶冷却孔,开展了不同冷气流量下的数值模拟研究。计算结果表明:不同旋转条件下,当冷气与主流的流量比为0.3%时,叶栅能量损失最低,当流量比为1.0%时,间隙泄漏流量最低、叶顶传热性能最好。叶片旋转、机匣旋转和平移运动都能降低泄漏损失和泄漏流量,叶片旋转时,叶栅出口下游上半叶高截面的能量损失最大降低约26.10%。旋转效应对泄漏损失的影响不随流量比变化而改变,但对叶栅总损失和叶顶传热品质的影响随流量比增加会不同。当流量比小于0.3%时,叶片旋转情况下叶栅总损失低于静止工况但高于机匣运动工况,且叶顶传热品质最优;当流量比大于0.7%时,叶片旋转使叶栅总损失最高,机匣运动使叶顶传热品质最优。  相似文献   

11.
为防止燃气入侵涡轮盘腔,提高运行安全性,对盘腔和轮缘密封间隙内非定常流动机理进行了深入研究。采用数值求解三维URANS(Unsteady Reynolds Averaged Navier-Stokes)和SST湍流模型的方法,研究了涡轮径向轮缘密封的非定常燃气入侵和封严效率。数值计算的径向轮缘密封的封严效率和环量比与实验数据吻合一致,验证了数值方法的可靠性。分析了6种冷气流量下径向轮缘密封的非定常压力分布、封严效率和燃气入侵与冷气出流特性。研究表明:冷气流量的增加阻止了径向轮缘密封处的燃气入侵和强化了冷气出流,径向轮缘密封盘腔内的封严效率随着冷气流量的增加而增加;动盘附近的封严效率高于静盘;入侵燃气基本被限制在径向轮缘密封的间隙区域。径向轮缘密封间隙出口处的主流周向时均压力随着冷气流量的增加而增加,周向时均压力最大值与最小值的差值随着冷气流量的增加而减小。当动叶前缘与静叶尾缘距离较近且不断靠近的过程,主流周向压力最大值与最小值的差值增大,动静叶相分离的过程周向压力最大值和最小值的差值减小。在静叶和动叶间非定常干涉作用下,轮缘密封间隙出口区域主流周向压力最大值与最小值差值较大时刻的主流低压区域具有优良的封严效率,同时高压区域的燃气入侵导致封严效率降低。  相似文献   

12.
涡轮导叶前缘多排孔冷气掺混数值模拟   总被引:1,自引:1,他引:0  
针对某三维扭转冷却涡轮导叶在前缘开设3排冷却孔,冷却孔流向夹角均为90°,径向射流角分别为30°,60°和90°,分别采用点源项与真实孔射流两种方法对前缘冷却孔气动性能和冷却特性进行了对比研究,分析了点源项与真实孔冷气掺混机制以及不同径向射流角对叶栅通道流场和冷却特性的影响.结果表明:真实冷却孔射流对前缘附近约10%轴向弦长范围内的流动影响较大,冷却效果涵盖了整个导叶;点源项方法所得压力与非冷却涡轮很接近;冷气径向喷射角减小,真实孔模型导叶表面温度下降了8%~16%,而点源项模型导叶表面温度降低了21%~23%.在工程实际中不能将点源项法计算结果用作定量评估依据.   相似文献   

13.
采用气动传热耦合方法计算分析了轮毂封严冷气对多级涡轮流动结构、性能和热负荷的影响.结果表明:在多级涡轮中冷气与主流燃气的相互作用会显著影响盘腔流动结构以及冷气在封严腔出口间的分配,并导致冷却效果和性能随冷气流量非线性变化,在这种情况下采用气动传热耦合计算可以兼顾捕捉和考察温度调控能力和气动损失的急剧改变.在涡轮级间冷气带来的堵塞效应会使相邻涡轮级工况点沿特性线移动,下游涡轮级2.5%的封严冷气就可以导致上游涡轮主流流量变化约0.6%,膨胀比变化约1.2%.在涡轮级内部未经预旋的封严冷气会减小转子叶根气动载荷,并形成黏性剪切层造成掺混损失,同时通过改变端区二次涡强度来影响流动结构,最终导致涡轮性能下降.   相似文献   

14.
为了提高涡轮叶片对流冷却模型预测精度,提出了一种在叶片固壁内同时考虑叶片径向和垂直于壁面方向(法向)导热的二维对流冷却模型。该模型在弦长方向划分多个元素,忽略元素内弦长方向叶片温度变化,在元素内的径向和法向建立二维导热方程作为叶片固壁温度场的控制方程,其边界条件包括叶表燃气绝热温度、燃气侧对流换热系数和叶片叶根、叶顶热流密度等。给出了该模型二维导热方程和边界条件的差分求解方法。以E~3涡轮高压导叶为例,将模型与CFD计算的叶片外壁面温度分布进行了对比。结果表明,该模型在给定冷气量下预测的叶片温度分布变化趋势与CFD相近,最大温度误差不超过6.5%,计算时间与CFD相比缩短了95%,能够快速、准确预测涡轮对流冷却叶片的冷气需求量。  相似文献   

15.
研究了冷气流量对气孔周围热应力的影响,为气膜冷却叶片可靠性设计提供参考。改变气孔的孔径,并建立有限元模型,结合有限元/边界元理论,通过流固热三场耦合技术获得热冲击后的叶片最大温度、温度不均衡程度及最大热应力。研究表明:增加冷气量有利于改善叶片冷却效率降低叶片温度,但也会使叶片温度不均衡程度增加,加剧尾缘气孔内的热应力载荷;增加前缘气孔直径可提升66%的平均冷却效率,有利于减缓气孔内的热应力,增加尾缘气孔的直径对冷却效率及热应力的影响均较小。此外,数值计算结果与试验及解析解较为吻合,对于气膜冷却叶片结构设计具有参考价值。   相似文献   

16.
对外冷喷流和内冷管流等不同冷却方式下的红外窗口传热和热应力进行了数值计算研究.窗口结构传热和热应力采用有限元方法求解,带外部冷喷流窗口外表面气动加热率则通过对带冷源项的N-S方程求解给出,当采用管流冷却时,管流液体温度和窗口结构温度通过耦合迭代方式统一求解,管流和壁面间的换热系数采用工程关联公式估算.研究表明,在达到来流总温以前,窗口各点温度和热应力随加热时间单调上升,各时刻最大温度发生在外表面;而最大热应力则发生在合金材料内部.两种冷却方式对比表明,外冷方式对于窗口整体温度和热应力的降低十分有效,但具体到局部重要部位,外冷方式效果不如内冷,内冷方式对于管道附近部位具有更好的降温和降低热应力效果.因红外窗口尺度限制,冷却管道流动雷诺数偏小,流动为层流态,这限制了冷却管换热效率的提高,因此建议增加管道数目和管壁粗糙度来强化冷却.  相似文献   

17.
针对低压涡轮叶尖间隙控制系统中典型供气管路,即圆形截面90°弯曲冷却管,开展其工作特性和模拟方法研究.通过1∶1单管模型试验结合三维数值模拟方法,研究了冷却管上冲击孔的出流特性,分析了进气参数、冲击孔排布对冷却管内气体流动及流量分配的影响规律.在此基础上,提出了基于冲击孔进口有效总压概念的冷却管一维网络流动计算模型,建立了低压涡轮叶尖间隙系统中典型供气管路的一维网络流动计算方法,并应用于某型发动机组件流量特性试验设计中.研究中发现,随着远离进口位置,冷却管冲击孔出流流量和冲击孔流量系数逐步增加;随着进口雷诺数的增加,冷却管内冲击孔出流流量均有所增加,而冲击孔流量系数基本保持不变.试验数据和计算结果比对表明,所建立的一维网络流动计算模型可以准确模拟出冷却管的出流特性,计算结果同组件流量特性试验数据之间最大相对误差为4.5%,在叶尖间隙控制系统这类系统复杂流路的流动问题分析中具有良好的应用效果.   相似文献   

18.
为了分析涡轮叶片裂纹故障的3维叶尖间隙动态变化特性,以3维叶尖间隙动态测量试验台上的模拟涡轮转子为研究 对象,建立了涡轮叶片3维叶尖间隙的有限元分析模型;采用数值仿真分析方法分别深入地分析了无裂纹涡轮叶片和不同长度裂 纹叶片3维叶尖间隙的动态变化特性。结果表明:对于无裂纹涡轮叶片,气动载荷会导致其发生弯曲变形,进而,导致轴向偏转角 呈先增大后减小的变化趋势,周向滑移角则逐渐减小,并且气动载荷对轴向偏转角和周向滑移角的影响比对径向间隙的影响更为 显著;对于有裂纹涡轮叶片,在气动载荷、离心载荷、叶片尾缘裂纹故障以及叶片自身形态等多种因素的共同影响下,导致径向间 隙呈现逐渐增大,而轴向偏转角和周向滑移角均呈现逐渐减小的变化趋势。  相似文献   

19.
为了研究自由液体射流冲击均匀加热高速旋转圆盘的耦合换热特性,采用数值模拟方法对比分析了固体和流体材料参数对流动及换热的影响。结果表明:不同固体材料参数对应的努塞尔数分布规律相似,同一半径位置处的努塞尔数最大相对偏差不大于10%。与径向温度分布相比,轴向温度差受固体材料导热系数变化的影响更大,铜和泡沫砖的径向最大温差仅相差3倍,而与导热系数近似呈反比的最大轴向温差相差达3 471倍。圆盘表面液膜平均径向流速和换热性能随流体黏度的增加而下降。黏度较小的氨和水对应的二次峰值换热强度较一次峰值的增加量超过了15%,黏度较高油类的二次峰值换热强度仅为一次峰值的50%~60%。射流介质采用黏度较小的水和氨时,盘面温度几乎保持不变,最大温差比小于7.86×10-4;黏度较大的油类作为射流介质时在驻点附近的温度变化剧烈,当R/d超过2.5后,温度分布仅有小幅的波动。  相似文献   

20.
密封汽流激振严重影响超超临界汽轮机的安全运行,采用DEFINE_CG_MOTION和DEFINE_PROFILE控制宏建立转子的涡动方程,通过Workbench流固耦合方法计算热、动载荷下密封齿形变,根据快速傅里叶变化得到机组运行时的密封动力特性,并对转子稳定性进行分析。结果表明:蒸汽可导致密封齿膨胀变形,温度对密封齿长度变化影响可达1%~1.5%,压力和离心作用对其影响较小。热、动载荷使迷宫密封直接刚度减小,直接阻尼先增加后减小,交叉刚度先减小后增加,动力系数的最大变化为原来的2倍。35~55 Hz内转子稳定裕度急剧下降,转子对密封汽流激振更敏感。热、动载荷引起的压力波动集中在低频范围,密封周向压力波动可增高18.5 kPa。密封高压区的压力波幅剧增是汽流激振显著的主要原因。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号