首页 | 本学科首页   官方微博 | 高级检索  
     检索      

热冲击后气膜冷却叶片结构强度流固热耦合仿真
引用本文:关鹏,艾延廷,王志,包天南.热冲击后气膜冷却叶片结构强度流固热耦合仿真[J].航空动力学报,2018,33(8):1811-1820.
作者姓名:关鹏  艾延廷  王志  包天南
作者单位:1.西北工业大学 动力与能源学院,西安 710072
基金项目:国家自然科学基金(51406124)
摘    要:研究了冷气流量对气孔周围热应力的影响,为气膜冷却叶片可靠性设计提供参考。改变气孔的孔径,并建立有限元模型,结合有限元/边界元理论,通过流固热三场耦合技术获得热冲击后的叶片最大温度、温度不均衡程度及最大热应力。研究表明:增加冷气量有利于改善叶片冷却效率降低叶片温度,但也会使叶片温度不均衡程度增加,加剧尾缘气孔内的热应力载荷;增加前缘气孔直径可提升66%的平均冷却效率,有利于减缓气孔内的热应力,增加尾缘气孔的直径对冷却效率及热应力的影响均较小。此外,数值计算结果与试验及解析解较为吻合,对于气膜冷却叶片结构设计具有参考价值。 

关 键 词:气膜冷却叶片    热冲击    结构强度    流固热耦合    热应力
收稿时间:2017/3/20 0:00:00

Structural strength simulation of film cooling vane after heat shock by thermal/flow/structure coupling
Abstract:Study on influence of coolant mass flux on the thermal stress around the hole provided a reference for the design of the reliability of the film cooling vane. Combining the finite element method and boundary element method, the pore size was changed, and the finite element model was established to obtain the maximum temperature, temperature imbalance degree and maximum thermal stress of the vane after thermal shock with transient thermal/flow/structure coupling technology. Research showed that increasing the coolant mass flux was beneficial to improve the cooling efficiency and reduce the vane temperature, but also increase the imbalance temperature of the vane, which may lead to more serious thermal stress concentration at the trailing edge. Increasing the pore diameter at the leading edge can increase the average cooling efficiency by 66%, helping to slow down the thermal stress in the pores. However, increasing the trailing air hole diameter had moderate effect on average cooling efficiency and thermal stress. Above all, numerical results were consistent with experiment and theory, showing the results were valuable reference for aero-engine turbine vane cooling designers.
Keywords:film cooling vane  thermal shock  structure strength  thermal/flow/structure coupling  thermal stress
本文献已被 CNKI 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号