首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
为探索碳纤维增强树脂基复合材料(CFRP)铣削加工过程中切削力与工艺参数之间的映射关系,建立CFRP铣削加工有限元仿真模型并对切削力进行分析。基于ABAQUS软件通过定义材料属性、材料失效模型、纤维铺层数和纤维方向建立了CFRP铣削加工二维有限元仿真模型,并对该模型进行了实验验证。基于该模型,分析了切削力与纤维方向角、铣削速度、每齿进给量和刀具前角等工艺参数之间的映射关系。仿真结果表明:纤维方向角从0°增大到90°,切削力呈现降低趋势,而纤维方向角从90°增大到180°,切削力呈现增大趋势。随着切削速度和每齿进给量的增大,切削力随之增大,而随着刀具前角增大,切削力随之减小。  相似文献   

2.
碳纤维增强树脂基复合材料(CFRP)切削中,存在纤维断裂、基体失效和界面相失效等多个过程,且不同纤维切削角时切屑形成机理不同,因而CFRP切削力的有效预测非常困难。对此本文结合最小势能原理和Winkler弹性地基梁理论,基于CFRP代表性单元(RVE),利用其微元求解纤维挠曲变形方程,分别分析了不同纤维方向角时三个切削变形区的力学行为,并完成纤维临界损伤长度的预测,最终形成不同纤维方向角时的CFRP切削力解析模型。通过CFRP直刃铣刀铣削实验,进行了切削力模型的验证,当纤维方向角在0°~180°时,切削力计算值和实验值随纤维方向角的变化趋势相吻合,切削力大小误差在15%以内。切削力随纤维方向角的增大先增后减,分别在90°和45°附近转变变化趋势。切削形貌表明,纤维方向角为135°时,CFRP铣边加工质量较差,临界损伤长度也较大。建立的切削力解析模型可以较为准确地预测CFRP正交切削力,可为CFRP切屑形成中的力学行为分析提供理论指导。  相似文献   

3.
为减小碳纤维增强复合材料(CFRP)加工时的面下损伤深度,创建了基于二维Hashin准则的宏观连续动态切削CFRP有限元模型,分析了切削力和面下损伤深度与纤维方向角之间的变化趋势,通过引入织构刀具来降低切削力及面下损伤深度,比较了沟槽形织构刀具、圆形织构刀具、三角形织构刀具切削CFRP的切削力和面下损伤。结果表明,不同织构刀具的切削力和面下损伤深度随纤维方向角变化趋势一致,均在0°时最小,90°达到最大值;织构刀具相对传统无织构刀具切削CFRP时均降低了切削力和面下损伤深度,其中圆形织构刀具降低程度最大;仿真模型经实验验证准确有效。  相似文献   

4.
碳纤维增强树脂基复合材料(CFRP)在传统加工(OC)过程中存在着切削力过大、表面质量不佳、面下损伤较为严重等问题。为了改善上述问题,本文提出使用超声振动辅助切削(UVC)工艺加工CFRP,通过仿真分析对切削力与面下损伤深度进行研究。结果表明:使用UVC加工CFRP可降低13%~80%的切削力,且纤维方向角对切削力影响较小。与OC相比,UVC切削0°、45°纤维方向角的CFRP时可以减少约50%的面下损伤深度;在切削90°、135°纤维方向角的CFRP时虽然没有改善面下损伤深度,但取得了较为平整的已加工表面以及较小的损伤区域。  相似文献   

5.
纤维夹角和铣削参数对CFRP铣削力的影响   总被引:3,自引:3,他引:0  
为探索CFRP铣削加工中出现的分层、崩边等表面缺陷形成机理,对CFRP进行铣削加工实验。基于单因素实验法获得了纤维夹角对CFRP铣削力的影响规律,基于中心复合曲面设计,获得了硬质合金刀具铣削CFRP过程中铣削速度、每齿进给量和铣削深度对铣削力的影响规律,并构建了铣削力的预报模型。实验结果表明:纤维夹角在0°~90°,铣削力随纤维夹角的增大而降低,而在90°~180°,铣削力随纤维夹角的增大而增大。f_z和a_e对三个方向铣削力影响都较为显著。v_c对y向和z向铣削力影响较为显著,而对x向铣削力影响不显著。铣削力随三个铣削参数的升高而增大,其中每齿进给量对铣削力影响最大。  相似文献   

6.
万敏  杜宇轩  张卫红  杨昀 《航空学报》2021,42(10):524134-524134
螺旋铣削加工工艺具有降低轴向力,改善排屑、散热条件等优点,螺旋铣削力是其重要过程指标之一。对单向CFRP螺旋铣削力建模方法展开研究,预测给定加工参数下的螺旋铣削力。首先,通过对螺旋铣削过程进行运动学分析和切屑几何分析,建立了螺旋铣削过程中侧刃、底刃动态切屑层模型,纤维切削方向角度模型和动态切削力计算模型。然后,分别通过侧刃直线槽铣实验和底刃半齿插铣实验,对各个切削方向角度下侧刃、底刃切削力系数进行了标定,并利用人工神经网络对切削力系数进行拟合。最后,将标定所得的切削力系数代入动态切削力计算模型中,建立了单向CFRP螺旋铣削过程动态切削力预测模型,并通过实验验证了模型的准确性。与现有模型相比,该模型不仅能够预测刀具螺旋运动周期内的切削力变化情况,还可以对每个刀具自转周期内的细节进行预测,通过考虑纤维切削方向角度对切削力系数的影响,反映了单向CFRP材料的各向异性,较为准确地预测了螺旋铣削力。  相似文献   

7.
为探究碳纤维复合材料(CFRP)微观切削机理,通过有限元法,采用零厚度内聚力单元模拟界面相,碳纤维建模呈圆柱状并随机分布于基体中,以此来真实反应CFRP的微观结构。通过对各组成相设置不同的材料本构、材料失效和演化准则,对4种典型角度(0°、45°、90°、135°)进行直角切削仿真,探究不同纤维角度下单向碳纤维增强树脂基复合材料(UD-CFRP)在切削过程中的微观切削机理。结果表明:不同纤维角度下CFRP的微观破坏形式不同,切削0°CFRP时破坏主要以界面开裂和纤维折断为主,切削45°和90°CFRP时主要是刀具的侵入破坏,切削135°CFRP时则发生纤维的断裂和沿纤维方向的裂纹,纤维断裂点在刀刃下方。最后,通过实验验证了微观模型的准确性。  相似文献   

8.
为了获得超高强度钢铣削过程中切削力的变化规律,分别基于有限元仿真软件ABAQUS和DEFORM,建立了16Co14Ni10Cr2Mo超高强度钢铣削加工有限元仿真模型并进行了模拟仿真和铣削验证实验,研究了刀具几何参数和铣削参数对切削力的影响规律。结果表明:切削力随前角增大而降低,随后角增大变化不大,其中前角影响较为显著;切削力随铣削速度增大而减小,随每齿进给量、铣削深度和铣削宽度的增大而增大,其中铣削深度和铣削宽度影响较为显著。刀具几何参数的最佳取值范围为:前角6°~8°,后角12°~14°。  相似文献   

9.
石英增强聚酰亚胺树脂基复合材料是一种非均匀的各向异性材料,其加工性能高度依赖于纤维铺层方向与加工进给方向所成角度,即纤维方向角。本文通过一系列不同纤维方向角的干切削和超低温冷却铣削实验,研究了纤维方向角对表面形貌、表面粗糙度、铣削力及刀具磨损的影响。结果表明:不同纤维方向角,剪应力形式不同,切削断屑形式也不同。纤维方向角为锐角时铣削表面质量均良好,但当纤维方向角增大到90°时,切削表面质量下降,切削力变化幅度增大。相同铣削时间内,在干切削工况下,刀具磨损严重,涂层脱落面积约为测量面积的70%;而在低温切削工况下,涂层未遭到严重破坏,刀具仍处于稳定磨损阶段,刀具耐用度优于干切削工况。  相似文献   

10.
以正交切削试验为手段,研究T800 CFRP在小切削余量条件下的切削加工过程和表面形成规律,深入探讨了CFRP在精密切削加工中的切削取向、切削参数范围以及刀具刃口钝圆半径等几个关键问题。试验结果表明:CFRP在切削加工中表现出极为显著的各向异性,切削取向非常重要,0°和135°两个纤维方向上获取了较小的切削力,0°和90°两个纤维方向上形成了较为光滑、平整的表面质量。在精密削CFRP的场合,为获得较小的切削力并得到较好的加工表面质量,0°纤维方向角是最佳切削方向,切削速度应达到200 m/min以上,要选择较小的刀具刃口钝圆半径,切削厚度应大于刀具刃口钝圆半径。  相似文献   

11.
《中国航空学报》2023,36(5):549-565
The aim of the present paper is to reveal the influence of different fiber orientations on the tool wear evolution and wear mechanism. Side-milling experiments with large-diameter milling tools are conducted. A finite element (FE) cutting model of carbon fiber reinforced plastics (CFRP) is established to get insight into the cutting stress status at different wear stages. The results show that different fiber orientations bring about distinct differences in the extent, profile and mechanism of tool wear. Severer wear occurs when cutting 45° and 90° plies, followed by 0°, correspondingly, the least wear is obtained when θ = 135° (θ represents the orientation of fibers). Moreover, the worn profiles of cutting tools when θ = 0° and 45° are waterfall edge, while round edge occurs when θ = 135° and a combined shape of waterfall and round edge is obtained when θ = 90°. The wear mechanisms under different fiber orientations are strongly dependent on the cutting stress distributions. The evolution of tool wear profile is basically consistent with the stress distribution on the tool surface at different wear stages, and the extent of tool wear is determined by the magnitude of stress on the tool surface. Besides, the worn edges produce an actual negative clearance angle, which decreases the actual cutting thickness and leads to compressing and bending failure of fibers beneath the cutting region as well as low surface qualities.  相似文献   

12.
层合板干涉螺接分层损伤及其临界干涉量   总被引:1,自引:1,他引:0  
宋丹龙  张开富  钟衡  李原 《航空学报》2016,37(5):1677-1688
复合材料层合板的干涉配合连接具有优越的性能,是飞机复合材料结构连接的发展趋势。然而,层合板在干涉连接过程中易出现分层损伤。针对以上问题,采用理论建模与有限元模拟方法研究了碳纤维增强树脂基复合材料(CFRP)层合板干涉螺接过程中的分层损伤及其临界干涉量。首先,对CFRP层合板的干涉螺接工艺过程和分层损伤进行力学行为分析;然后,基于虚功原理,建立了各层界面的分层损伤临界轴向力计算模型,结合插钉力与干涉量间的关系,建立临界干涉量的预测模型,求得分层损伤的临界干涉量;最后,采用ABAQUS有限元软件对CFRP层合板干涉螺接过程进行数值模拟,应用内聚力单元建立层合板层间界面,模拟了CFRP层合板在不同干涉量时的分层损伤机理,并通过扫描电子显微镜(SEM)实验观测了细观分层损伤。研究结果显示:干涉量是影响CFRP层合板分层损伤的主要工艺参数;层合板中越靠下边的层间界面,其不产生分层损伤的临界轴向力和临界干涉量越小,即越容易产生分层损伤。  相似文献   

13.
为研究CFRP不同纤维方向对其钻孔温度场分布和孔壁质量的影响,对不同纤维方向角处切削形式进行理论分析和ABAQUS仿真分析,并结合CFRP单向板、正交板和准各向同性板的钻削温度分布测试试验与钻削温度场仿真分析。结果表明,碳纤维方向对钻削温度场的分布规律影响很大;通过电子显微镜和共聚焦显微镜对不同纤维方向角处孔壁质量观测对比,发现纤维方向角在θ=0°、θ=45°和θ=90°处孔壁质量较好,在θ=135°处孔壁质量较差。  相似文献   

14.
使用PCD立式铣刀对聚合物浸渍裂解法(PIP)制备的SiC_(f)/SiC复合材料开展单因素铣削试验,通过对加工中产生的切削力和加工后的表面粗糙度进行测量,分析了铣削工艺参数对其的影响;对加工表面、纤维断口进行SEM分析,讨论了SiC_(f)/SiC复合材料加工表面的形成。研究结果表明,表面粗糙度与切削力的变化趋势相同,高主轴转速和小切削宽度有利于得到表面粗糙度较小的加工表面;近孔洞区域与远离孔洞区域的材料去除方式不同;材料中纤维发生面内偏移和层间屈曲,纤维存在多种去除方式。  相似文献   

15.
基于Deform 2D仿真软件建立了Inconel 718高温合金车削的有限元模型,对车削过程进行了仿真分析,获得了刀具涂层材料和刀具几何参数对切削力的影响规律。研究结果表明:Inconel 718车削过程中,采用涂层刀具时切削力无明显降低;切削力随前角增大而降低,随后角增大变化不大,随刀尖圆弧半径增大而升高,其中前角和刀尖圆弧半径影响较为显著;根据Inconel 718的切削加工性,建议Inconel 718精车时刀具几何参数的取值范围为:前角6°~8°,后角12°~14°,刀尖圆弧半径0.2~0.4mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号