首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for designing fixed-gain controllers and filters for systems with large parameter variation is presented. The approach is based on finding the minimax point of the Kullback information measure between the fixed-gain system and the optimal system at a given operating point. The effectiveness of the proposed approach is illustrated by designing a fixed-gain system for the short-period control of a high-performance aircraft and evaluating its performance over the flight envelope.  相似文献   

2.
倾转旋翼飞行器的建模和操纵分配策略   总被引:7,自引:3,他引:4  
针对倾转旋翼飞行器试飞样机建立了旋翼、机翼、短舱、机身、平尾、垂尾等部件的非线性气动模型和飞行动力学模型,研究了直升机模式、倾转过渡模式和飞机模式下的操纵特性,根据配平分析和小扰动线性化处理结果得到了不同飞行模式下的操纵效率,提出了一套适用于全飞行模式的操纵分配策略,解决了飞行控制随飞行模式变化出现的气动结构部件变化与操纵冗余的难题.利用所提出的操纵分配策略可使飞行控制器统一设计,无需按不同飞行模式设计不同控制律,有效降低了飞行控制器的设计难度.仿真验证了倾转旋翼飞行器飞行动力学模型的可信性和操纵分配策略的有效性.   相似文献   

3.
飞机的模型参考容错控制   总被引:2,自引:0,他引:2  
胡寿松  程炯 《航空学报》1991,12(5):279-286
 本文针对飞机内部元件或控制元件的故障,用检测滤波器理论设计了相应的故障检测器和故障参数估计器,并用Lyapunov稳定性理论设计了模型参考自适应容错控制律,从而保证了在内部故障情况下飞行控制系统的稳定性。  相似文献   

4.
对某型飞机数字防滑刹车控制盒的可靠性进行了分析,利用工程加权法对控制盒进行了可靠性分配,并通过元器件可靠性预计法对控制盒的可靠性进行预计.对比及验证表明,控制盒可靠性设计合理,满足主机及系统要求.  相似文献   

5.
讨论了一种鲁棒性控制器的设计方法。此法已在总能量控制系统(TECS)的设计中得到应用。本文基于根平面理论来讨论这一问题,从而避免了复杂的数学计算,仅利用几何作图或计算机辅助设计,使控制器成为满足一定带宽和超调要求的鲁棒控制器。  相似文献   

6.
A method is presented for reducing trajectory sensitivity and achieving robust asymptotic tracking for linear feedback systems when there are parameter perturbations and disturbance inputs. The controller consists of a servocompensator containing the modes of the reference signals and disturbance inputs, a stabilizing feedback loop, and a feedforward compensator. Application of the method to the design of a vertical takeoff and landing (VTOL) aircraft flight control system is discussed. The use of a precompensator allows performance maneuvers such that the aircraft tracks desired trajectories and the feedforward and feedback signals aid in reducing the trajectory sensitivity to variations of parameters due to change in airspeed and to wind gust. Simulation results are presented to show the robust tracking, disturbance rejection, and sensitivity reduction capabilities of the flight control system.  相似文献   

7.
《中国航空学报》2021,34(10):166-176
The maneuvering time on the ground accounts for 10%–30% of their flight time, and it always exceeds 50% for short-haul aircraft when the ground traffic is congested. Aircraft also contribute significantly to emissions, fuel burn, and noise when taxiing on the ground at airports. There is an urgent need to reduce aircraft taxiing time on the ground. However, it is too expensive for airports and aircraft carriers to build and maintain more runways, and it is space-limited to tow the aircraft fast using tractors. Autonomous drive capability is currently the best solution for aircraft, which can save the maneuver time for aircraft. An idea is proposed that the wheels are driven by APU-powered (auxiliary power unit) motors, APU is working on its efficient point; consequently, the emissions, fuel burn, and noise will be reduced significantly. For Front-wheel drive aircraft, the front wheel must provide longitudinal force to tow the plane forward and lateral force to help the aircraft make a turn. Forward traction effects the aircraft’s maximum turning ability, which is difficult to be modeled to guide the controller design. Deep reinforcement learning provides a powerful tool to help us design controllers for black-box models; however, the models of related works are always simplified, fixed, or not easily modified, but that is what we care about most. Only with complex models can the trained controller be intelligent. High-fidelity models that can easily modified are necessary for aircraft ground maneuver controller design. This paper focuses on the maneuvering problem of front-wheel drive aircraft, a high-fidelity aircraft taxiing dynamic model is established, including the 6-DOF airframe, landing gears, and nonlinear tire force model. A deep reinforcement learning based controller was designed to improve the maneuver performance of front-wheel drive aircraft. It is proved that in some conditions, the DRL based controller outperformed conventional look-ahead controllers.  相似文献   

8.
In the sense of eigenstructure (eigenvalues/eigenvectors) assignment, the effectiveness and disturbance suppressibility of a controller are mainly dependent on the left eigenstructure (eigenvalues/left eigenvectors) of a system. However, the disturbance decouplability is governed by the right eigenstructure (eigenvalues/right eigenvectors) of the system. In order to obtain a disturbance decouplable as well as effective and disturbance suppressible controller, a simultaneous assignment methodology of the right and left eigenstructures is proposed. The biorthogonality property between the left and right modal matrices of a system as well as the relations between the achievable right modal matrix and states selection matrices are used to develop the methodology. The proposed simultaneous eigenstructures assignment methodology guarantees that the desired eigenvalues are achieved exactly and the desired left and right eigenvectors are assigned to the best possible(achievable) sets of eigenvectors in the least square sense, respectively. An L-1011 flight control application is presented to illustrate the usefulness of the proposed methodology  相似文献   

9.
This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft’s dynamic response will be governed by time-varying aerodynamic forces and moments. Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach, and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained. A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process. The proposed controller uses a set of inner-loop gains to provide stability using classical techniques, whereas a gain self-scheduled H 1 outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics. The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process, and they converge rapidly after the process ends. This proves that the gain self-scheduled H 1 robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process. Finally, the flight control system’s robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model.  相似文献   

10.
耿征  傅道里 《航空学报》1985,6(2):164-171
 本文研究了状态反馈系统的特征结构配置(Eigenstructure Assignment)问题。文中提出了配置具有多重特征值及复共轭特征值的特征结构的算法。并以某飞行控制系统的设计为例说明了算法的应用;最后还给出了设计方案的数字~模拟计算机仿真实验结果。  相似文献   

11.
Butterworth滤波器在飞行控制系统设计中的应用   总被引:2,自引:0,他引:2  
研究了基于Butterworth滤波器设计思想的控制器设计方法,将这种方法应用于某飞机纵向飞行控制的设计,并进行了鲁棒性仿真研究.结果表明:该方法设计简单,只需确定一个设计参数,就可对飞行控制系统进行初期阶段设计,具有较强的工程实用价值.  相似文献   

12.
针对运输机舵面故障情况下的姿态容错控制问题,提出了一种考虑预设性能约束的自适应指令滤波增量反步(Adaptive Command-filtered Incremental Backstepping,ACFIBS)容错控制器。首先,构造运输机故障模型,在反步控制设计结构下,通过构造预设性能函数,保证外回路姿态角跟踪误差的动态性能。然后,考虑舵机偏转速率和幅值限制,引入受限指令滤波器和补偿信号,综合考虑气动参数不确定性,采用增量方法设计反步内环控制律。在此基础上,进一步考虑舵面故障情况,引入自适应方法及低通滤波器改进增量反步控制器。最后,通过理论推导和仿真试验验证了控制方法的有效性。仿真结果表明,所设计的控制器具有良好的容错性能,在不同舵面故障条件下均可实现对指令信号的预设性能跟踪,且在参数摄动情况下具有较强的鲁棒性。  相似文献   

13.
The development and performance of moving-bank multiple model adaptive control (MMAC) algorithms for quelling vibrations induced in the SPICE 2 space structure are presented. The structure consists of a large platform and a smaller platform connected by three legs in a tripod fashion. Deviations of the line-of-sight (LOS) vector from the center of the large platform to the center of the smaller platform are used for LQG controller performance evaluation. The parameter estimator implements the maximum entropy with identity covariance (ME/I) algorithm; the moving-bank logic employs parameter position monitoring; the controller uses the modified MMAC method. Whereas parameter variations of two percent caused instabilities in the single filter/controller design, the MMAC algorithm provides an excellent method to estimate a wide range of parameter variations and to quell oscillations in the structure  相似文献   

14.
This paper presents a control design approach based on eigenstructure assignment by dynamic feedback. The proposed method permits the designer to handle simultaneously robustness against real parameter variations (from a multimodel point of view) and the use of structured gain including, as a special case, scheduled gains. Furthermore, given a feedback gain, it is possible to re-design it by eigenstructure assignment by re-assigning its leading eigenstructure. This technique has two advantages. First, it can be viewed as an efficient controller order reduction, second, the design methodology can be initialized, for example, by H- or μ-synthesis which makes it possible to combine the advantages of techniques of different natures. The proposed method alternates multimodel design and μ-analysis but apart from these natural iterations, only algebraic computation is involved.  相似文献   

15.
本文对综合推力矢量飞行/推进控制系统的设计方法进行了研究,在充分考虑了推力矢量飞行、推进子系统之间的相互作用后,建立了带推力矢量综合飞行/推进控制系统的数学模型,结合推力矢量研究的特点,采用鲁棒伺服LQG/LTR设计法,进行控制系统的设计,通过仿真实验,证明设计达到了要求,方法可行  相似文献   

16.
A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor (BLDCM). Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail. The controller design is similar to saturation limit linear assignment. An auxiliary parameter and a boundary coefficient are imported into the controller to guarantee system stability and improve control performance. A time-varying and state-dependent flywheel output torque saturation limit model is established. Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invariance principle. Boundedness of the auxiliary parameter ensures that the control objective can be achieved, while the boundary parameter’s value makes a balance between system control performance and flywheel utilization efficiency. Compared with existing controllers, the newly developed controller with variable torque saturation limit can bring smoother control and faster system response. Numerical simulations validate the effectiveness of the controller.  相似文献   

17.
本文以内部模型控制(IMC)算法为出发点,阐述了航机陆用动力装置的控制系统的设计方法。文中讨论了内部模型的原理及特点,滞后系统辨识的特殊性及解决方法,最后又把IMC控制器与经典反馈系统的控制器比较。并对内部模型系统进行了仿真计算,用IMC算法设计的系统可简便地通过盏线调整一个参数来实现ISE最小及较好的过渡过程性能指标。  相似文献   

18.
采用Lyapunov直接法讨论分布参数系统的稳定性,建立分布参数系统的Lyapunov函数。为保证分布参数系统稳定,应使Lyapunov函数对时间的微分小于0。由于分布参数系统中存在空间一次微分项与二次微分项,Lyapunov函数对时间的微分中将出现常数项与积分项,针对常数项,引入空间一次微分项来抵消;针对积分项,引入对应的状态反馈来使系统稳定。利用边界条件量化Lyapunov函数对时间的微分中的各项,从而设计控制器,这是一种新的设计P-sD状态控制的方式。其中状态反馈的部分采用极点配置的方法来设计,当分布参数系统中出现状态变量的非线性函数时,采用T-S模糊模型表达,可以通过状态变量的线性组合精确描述非线性项,以便极点配置设计状态反馈。针对两个非线性分布参数数学模型进行仿真,结果证明设计的P-sD状态控制器可以使分布参数系统稳定,并达到期望的效果。  相似文献   

19.
微型飞行器过失速降落轨迹跟踪控制设计   总被引:1,自引:0,他引:1  
采用基于张量积的T-S模糊建模与控制方法,对微型飞行器过失速降落纵向运动的轨迹跟踪控制问题进行了研究。首先,建立了过失速降落中飞行器纵向运动的线性变参数动力学模型;然后,通过张量积模型转化方法,将线性变参数模型转化为张量积胞体模型,基于该模型设计了并行分布补偿控制器,用Lyapunov稳定性理论证明了闭环系统的稳定性,并推导了区域极点配置条件以获得更好的暂态响应性能;最后,对飞行器的过失速降落过程进行了仿真,验证了所设计的跟踪控制器的有效性。  相似文献   

20.
Integrated active fault-tolerant control using IMM approach   总被引:2,自引:0,他引:2  
An integrated fault detection, diagnosis, and reconfigurable control scheme based on interacting multiple model (IMM) approach is proposed. Fault detection and diagnosis (FDD) is carried out using an IMM estimator. An eigenstructure assignment (EA) technique is used for reconfigurable feedback control law design. To achieve steady-state tracking, reconfigurable feedforward controllers are also synthesized using input weighting approach. The developed scheme can deal with not only actuator and sensor faults, but also failures in, system components. To achieve fast and reliable fault detection, diagnosis, and controller reconfiguration, new fault diagnosis and controller reconfiguration mechanisms have been developed by a suitable combination of the information provided by the mode probabilities from the IMM algorithm and an index related to the closed-loop system performance. The proposed approach is evaluated using an aircraft example, and excellent results have been obtained  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号