首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对传统高分辨和宽测绘带以及高信噪比和宽测绘带之间的矛盾,提出一种基于脉内扫描面阵合成孔径雷达(SAR)系统的二维空域联合处理算法实现高信噪比、高分辨宽测绘带成像。文中首先建立脉内扫描面阵SAR系统模型,该系统采用低脉冲重复频率(PRF)获得宽测绘带信息,同时利用脉内扫描方式获得高信噪比的回波信号。对于低PRF采样宽多普勒谱(对应方位高分辨)引起的多普勒模糊以及脉内扫描引起的距离模糊,提出一种二维空域联合处理算法解距离和多普勒模糊,并且详细地分析了地形高度变化对解模糊算法的影响。最后,通过仿真实验验证了本文算法的有效性。  相似文献   

2.
马仑  李真芳  廖桂生 《航空学报》2007,28(5):1190-1194
 传统星载合成孔径雷达(SAR)受最小天线面积条件的限制,其横向分辨率与测绘带宽度相矛盾,采用编队飞行的分布式小卫星SAR体制,可解决这一矛盾,即能够同时获得大测绘带、高分辨率的地面场景的SAR图像。主要研究如何在误差环境下抑制由小天线引入的多普勒模糊的信号处理方法。该方法利用子空间投影技术对导向矢量进行精确估计,在小卫星存在基线及其他误差时仍然能够稳健地恢复高分辨的二维SAR图像。  相似文献   

3.
A new technique for eliminating Doppler aliasing artifacts in synthetic aperture radar (SAR) imagery is presented. The technique uses continuous transmission of stepped-frequency (SF) waveforms to generate a simple, but effective, approximation of a two-dimensional |sinc|2 ambiguity function. This approach ensures aliasing artifacts are placed at nulls in a Doppler filter, effectively removing them from the imagery. Various methods of generating SF waveforms are introduced and their performance is quantified. Finally, simulated SAR imagery shows elimination of more than 99% of the aliased energy  相似文献   

4.
 星载合成孔径雷达(SAR)飞行高度高,速度快、探测距离远、测绘带宽,运行轨道偏离理想圆形,因此获取SAR图象的数字信号处理技术十分复杂。本文从上述特点出发,讨论了星载SAR的目标回波信号数学模型,成象过程中方位处理的机理和方法,以及多视处理。  相似文献   

5.
It is essential and desirable to get a high resolution echo in a radar image without using a large antenna. On scanning a radar antenna, the target's distribution is smoothed by the antenna beam and a smeared echo appears on the radar display. This paper describes three different types of beam compression radars: subsurface SAR; correlation array radar; and inversion processed radar. The experimental results show that the beamwidth on display was effectively compressed by the signal processing  相似文献   

6.
Conventional synthetic aperture radar(SAR) systems cannot achieve both highresolution and wide-swath imaging simultaneously.This problem can be mitigated by employing multiple-azimuth-phases(MAPs) technology for spaceborne sliding spotlight SAR systems.However, traditional imaging algorithms have met challenges to process the data accurately, due to range model error, MAPs data reconstruction problem, high-order cross-coupling phase error and variation of Doppler parameters along the azimuth direction.Therefore, an improved imaging algorithm is proposed for solving the above problems.Firstly, a modified hyperbolic range equation(MHRE) is proposed by introducing a cubic term into the traditional hyperbolic range equation(THRE).And two curved orbit correction methods are derived based on the proposed range model.Then, a MAPs sliding spotlight data reconstruction method is introduced, which solves the spectral aliasing problem by a de-rotation operation.Finally, high-order cross-coupling phases and variation of Doppler parameters are analyzed and the corresponding compensation methods are proposed.Simulation results for point-target scene are provided to verify the effectiveness of the proposed algorithm.  相似文献   

7.
Synthetic Aperture Radar (SAR) is a well-proven imaging technique for remote sensing of the Earth. However, conventional SAR systems are not capable of fulfilling the increasing demands for improved spatial resolution and wider swath coverage. To overcome these inherent limitations, several innovative techniques have been suggested which employ multiple receive-apertures to gather additional information along the synthetic aperture. These digital beamforming (DBF) on receive techniques are reviewed with particular emphasis on the multi-aperture signal processing in azimuth and a multi-aperture reconstruction algorithm is presented that allows for the unambiguous recovery of the Doppler spectrum. The impact of Doppler aliasing is investigated and an analytic expression for the residual azimuth ambiguities is derived. Further, the influence of the processing on the signal-to-noise ratio (SNR) is analyzed, resulting in a pulse repetition frequency (PRF) dependent factor describing the SNR scaling of the multi-aperture beamforming network. The focus is then turned to a complete high-resolution wide-swath SAR system design example which demonstrates the intricate connection between multi-aperture azimuth processing and the system architecture. In this regard, alternative processing approaches are compared with the multi-aperture reconstruction algorithm. In a next step, optimization strategies are discussed as pattern tapering, prebeamshaping-on-receive, and modified processing algorithms. In this context, the analytic expressions for both the residual ambiguities and the SNR scaling factor are generalized to cascaded beamforming networks. The suggested techniques can moreover be extended in many ways. Examples discussed are a combination with ScanSAR burst mode operation and the transfer to multistatic sparse array configurations.  相似文献   

8.
鲍悦  陈俊宇  施天玥  毛新华 《航空学报》2021,42(6):324502-324502
高分宽幅(HRWS)数字波束形成(DBF)合成孔径雷达(SAR)利用多通道空间采样代替部分时域采样,可以有效缓解SAR成像时高分辨率与宽测绘带间的矛盾,具有重要的军用和民用价值。现有常规DBF-SAR成像算法都假设雷达传感器相对位置精确已知,实际应用中受传感器位置测量误差影响,由位置不精确导致的相位误差会严重影响DBF-SAR高精度成像能力。在极坐标格式算法(PFA)框架下,推导了DBF-SAR成像处理后,残留相位误差的解析模型,分析了该误差对成像质量的影响。依据推导的先验相位误差解析结构模型,提出了一种基于图像对比度最优化准则的自聚焦算法。新算法通过引入先验相位结构信息,极大降低了待估参数的空间维数,可以同时改善自聚焦算法的参数估计精度和计算效率。数据处理结果验证了理论分析的正确性和所提算法的有效性。  相似文献   

9.
NASA's Jet Propulsion Laboratory is currently building a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. Differential interferometry can provide key deformation measurements, important for studies of earthquakes, volcanoes, and other dynamically changing phenomena. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly pre-defined paths with great precision. The expected performance of the flight control system will constrain the flight path to be within a 10 m diameter tube about the desired flight track. The radar will be designed to be operable on a Unpiloted Arial Vehicle (UAV) but will initially be demonstrated on a NASA Gulfstream III. The radar will be fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and will support a 16 km range swath. The antenna will be electronically steered along track to assure that the antenna beam can be directed independently, regardless of the wind direction and speed. Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 45,000 feet (13,800 m). The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).  相似文献   

10.
A new concept of spaceborne synthetic aperture radar (SAR) implementation has recently been proposed - the constellation of small spaceborne SAR systems. In this implementation, several formation-flying small satellites cooperate to perform multiple space missions. We investigate the possibility to produce high-resolution wide-area SAR images and fine ground moving-target indicator (GMTI) performance with constellation of small spaceborne SAR systems. In particular, we focus on the problems introduced by this particular SAR system, such as Doppler ambiguities, high sparseness of the satellite array, and array element errors. A space-time adaptive processing (STAP) approach combined with conventional SAR imaging algorithms is proposed which can solve these problems to some extent. The main idea of the approach is to use a STAP-based method to properly overcome the aliasing effect caused by the lower pulse-repetition frequency (PRF) and thereby retrieve the unambiguous azimuth wide (full) spectrum signals from the received echoes. Following this operation, conventional SAR data processing tools can be applied to focus the SAR images fully. The proposed approach can simultaneously achieve both high-resolution SAR mapping of wide ground scenes and GMTI with high efficiency. To obtain array element errors, an array auto-calibration technique is proposed to estimate them based on the angular and Doppler ambiguity analysis of the clutter echo. The optimizing of satellite formations is also analyzed, and a platform velocity/PRF criterion for array configurations is presented. An approach is given to make it possible that almost any given sparse array configuration can satisfy the criterion by slightly adjusting the PRF. Simulated results are presented to verify the effectiveness of the proposed approaches.  相似文献   

11.
Maximum likelihood angle extractor for two closely spaced targets   总被引:2,自引:0,他引:2  
In a scenario of closely spaced targets special attention has to be paid to radar signal processing. We present an advanced processing technique, which uses the maximum likelihood (ML) criterion to extract from a monopulse radar separate angle measurements for unresolved targets. This processing results in a significant improvement, in terms of measurement error standard deviations, over angle estimators using the monopulse ratio. Algorithms are developed for Swerling I as well as Swerling III models of radar cross section (RCS) fluctuations. The accuracy of the results is compared with the Cramer Rao lower bound (CRLB) and also to the monopulse ratio technique. A novel technique to detect the presence of two unresolved targets is also discussed. The performance of the ML estimator was evaluated in a benchmark scenario of closely spaced targets - closer than half power beamwidth of a monopulse radar. The interacting multiple model probabilistic data association (IMMPDA) track estimator was used in conjunction with the ML angle extractor  相似文献   

12.
Beamspace ML bearing estimation incorporating low-angle geometry   总被引:1,自引:0,他引:1  
A problem in low-angle radar tracking, namely, bearing estimation in the presence of a strong specular multipath component that arrives within the beamwidth of the direct path signal, is studied. Three-dimensional beamspace domain maximum likelihood (3D-BDML) is a computationally simple ML bearing estimation algorithm applicable in this scenario which operates in a 3-D beamspace. A variation of 3D-BDML incorporating the multipath geometry as a priori information is presented. In symmetric 3D-BDML the pointing angle of the center beam is equal to the bisector angle between the direct path ray and the image ray, which may be estimated a priori given only the radar height and the target range. The effect of the inclusion of a priori information on the performance of 3D-BDML is analyzed in terms of the dependence on the relative phase difference between the direct and specular path signals, the sensitivity to error in the bisector angle estimate, and the results of operation when no specular multipath component is present in the data. In addition, computationally simple schemes for coherently incorporating multifrequency data into 3D-BDML are investigated  相似文献   

13.
As a step towards a real-time signal aperture radar (SAR) correlator, custom very large scale integration (VLSI) architectures are developed. Considering the extremely short word length of the data, we derive three architectures with massive parallelism in bit space. Unlike frequency methods, no. degradation is introduced during convolution. Optimized for time and space, they are highly suited to VLSI implementation, and a small architecture with 80 taps operating at 10 MHz has been built using an FPGA  相似文献   

14.
宋伟  朱岱寅  叶少华 《航空学报》2015,36(2):625-632
针对机载合成孔径雷达(SAR)高分辨率宽测绘带(HRWS)成像问题,在分析结合两步运动误差补偿的距离徙动算法基础上,提出一种基于数值计算的空变运动误差补偿算法。通过对粗聚焦图像进行分块,在子块的两维波数域进行空变运动补偿,补偿的相位包括方位相位误差、距离相位误差以及方位和距离的耦合相位,因此该算法在复杂航迹、高分辨和宽测绘带情况下仍具有较好的鲁棒性。最后对SAR仿真数据和实测数据进行处理,并与结合两步运动误差补偿的距离徙动算法进行比较,处理结果表明该算法能够更好地补偿空变运动误差。  相似文献   

15.
Under the Advanced Research Projects Agency (ARPA)/ASTO sponsorship, through a contract from the Naval Air Warfare Center (NAWC), the Environmental Research Institute of Michigan (ERIM) has developed an ultrawideband (UWB) very high frequency (VHF)/ultrahigh frequency (UHF) fully polarimetric airborne synthetic aperture radar (SAR) for studying the detection of foliage-obscured objects. The radar is installed in the NAWC P-3 testbed aircraft and takes advantage of existing ERIM-built multimode, fully-polarimetric X/L/C-band SAR hardware. This paper describes the radar and presents some examples of its capabilities including polarimetric imagery and two-pass interferometric surface height estimates  相似文献   

16.
本文提出了一种用于非平行轨迹机载双站斜视SAR条带模式成像的新的解析算法。该算法用收、发雷达的多普勒调频率贡献比为加权系数推导了点目标回波的二维频谱。通过解目标位置相对于收、发载机飞行轨迹的耦合,将这个二维频谱中目标的距离参数和方位参数进行了分离。在二维频域内,补偿掉双站扭曲项后利用二维Chirp-Z变换(2D-CZT)校正了距离向和方位向的徙动,获得了精确聚焦的目标图像。雷达回波的二维残余徙动用沿距离向和方位向的分块来限制,推导了数据分块的条件,由此可以实现宽场景成像。仿真试验验证了这种2D-CZT算法的有效性。  相似文献   

17.
基于3DT的空时自适应单脉冲参数估计算法   总被引:1,自引:0,他引:1  
于佳  沈明威  吴迪  朱岱寅 《航空学报》2016,37(5):1580-1586
空时自适应处理(STAP)是机载预警雷达抑制杂波和干扰的一项关键技术,而多普勒三通道联合自适应处理(3DT)是适合工程实现的降维(RD)STAP方法。STAP目标检测后还需进一步估计目标的角度参数,因此将自适应单脉冲(AM)技术引入3DT,提出了一种高精度联合估计目标速度与方位空间角的空时自适应单脉冲算法。理论分析与仿真实验结果表明,当目标多普勒频率偏离检测多普勒单元中心频率时,该算法能同时减少目标多普勒跨越损失和空时导引矢量失配损失,进而提高输出信杂噪比(SCNR),改善目标测角精度。  相似文献   

18.
3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions   总被引:2,自引:0,他引:2  
The results of three-dimensional (3-D) imaging of a T-72 tank using its angular azimuthal (turntable) and linear elevation synthetic aperture data at X band are presented. This is achieved using an accurate and computationally efficient wavefront (Fourier-based) reconstruction algorithm for elevation and circular (E-CSAR) data. The E-CSAR 3-D images are then used to synthesize 2-D spotlight and stripmap slant plane synthetic aperture radar (SAR) images of the target at a desired range and squint angle. For this purpose, a procedure is introduced that incorporates the spatially varying azimuthal and elevation Doppler signatures of individual reflectors on the target as well as the mean range, azimuth, and elevation of the flight path. Results using the E-CSAR images of the T-72 tank are provided.  相似文献   

19.
Radio interference generated in a helicopter-borne continuous wave (CW) Doppler radar system due to the rotating blades is analyzed. This problem has been previously treated for the case of pulse Doppler radar systems with very narrow (near zero) beamwidth. In this case the strong interference component returning directly from the blades (with no ground reflection) need not be considered as it reaches the receiver when it is still blinded. In the case of a CW Doppler radar, however, this interference component must be included. Numerical calculations show that the total blade interference power level, dominated by the direct component, is higher than that of the direct ground clutter in the radar clutter region. It decreases approximately as (f - fo)-4 in the radar clear region. It stays, however, well above the thermal noise level which might cause false alarm and degrade the radar performance.  相似文献   

20.
王昕  汪玲  朱岱寅 《航空学报》2014,35(4):1053-1063
超高分辨率条件下,机载合成孔径雷达(SAR)发射信号带宽大,合成孔径时间比较长,对成像处理算法的精度和效率要求较高。现有近似频率域处理和时间域滤波反投影(FBP)算法聚焦SAR数据时均存在诸多问题。基于微局部分析方法,提出了一种新颖的频率域滤波反投影(FD-FBP)成像处理方案。首先,利用Keystone变换简化了数据距离多普勒(RD)域徙动表达式。然后,在RD域进行反投影操作,对参考位置处反投影数据进行移位、相位补偿和FFT等操作即可以得到图像,从而在保证算法精确性的前提下有效降低了运算效率,实现了频率域方法的高效率和时间域方法的精确性特点的结合。最后,点目标仿真和实测数据处理以及与FBP等算法的对比验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号