首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对光纤陀螺仪在较宽温度范围(-40~+60℃)的使用需求,本文分析了光纤陀螺标度因数误差项的温度特性,依据回归分析理论,建立了光纤陀螺的全温误差模型并对陀螺进行了误差补偿,取得了较好的效果。补偿后陀螺的标度因数温度灵敏度由不大于70ppm/℃下降到不大于10ppm/℃,标度因数温度补偿提高了光纤陀螺仪的环境适应性,拓展了光纤陀螺的工程应用领域。  相似文献   

2.
首先分析了光纤陀螺产生温度误差的机理,在此基础上分别指出标度因数与零偏的误差补偿模型,提出了一种利用一组数据同时补偿标度因数及零偏的方法,直接表示输入与标度因数零偏补偿后的关系。最后通过实验验证了该方法不仅能够有效地补偿陀螺的温度误差,且其补偿精度优于原单独补偿的方法,同时该方法仅需一次温度实验,节省实验成本,具有较大的现实意义。  相似文献   

3.
一种MEMS陀螺标度因数误差补偿方法   总被引:3,自引:0,他引:3  
房建成  张霄  李建利 《航空学报》2010,31(2):350-355
高动态、恶劣温度环境下,微小型飞行器(MAV)导航、制导与控制系统关键器件微机电系统(MEMS)陀螺受温度和转速耦合影响,其标度因数误差呈强非线性特点,常规方法无法精确补偿。通过分析MEMS陀螺标度因数误差的产生机理,建立了包含温度和转速非线性因素的标度因数误差模型,提出一种基于径向基(RBF)神经网络的标度因数非线性耦合误差补偿方法,解决了常规补偿方法精度差的问题。标定与补偿实验表明:在-10~+55℃温度范围、-150~+150(°)/s输入转速范围内,采用新方法补偿后MEMS陀螺输出平均精度比多项式拟合方法提高7倍;在-20~+20(°)/s低输入转速的误差强非线性区间内,精度提高近20倍,验证了本文方法的有效性和优越性。  相似文献   

4.
环境温度冲击会降低机载光纤陀螺的性能,从而影响飞行器导航和姿态控制精度。在光纤陀螺误差机理研究基础上,本文提出一种基于长短期记忆(LSTM)神经网络的光纤陀螺温度误差补偿模型。该模型通过LSTM网络对光纤陀螺的零偏和标度因数进行实时预测和校正,提高光纤陀螺的测量精度。试验结果表明,在温度冲击下,LSTM预测模型补偿后的标度因数误差小于30ppm,零偏稳定性比常规的线性拟合补偿模型提高0.0034(°)/h。这意味着输出更准确地反映实际角速度值,陀螺仪的零偏漂移更小,输出更接近于零值。动态试验中转台输入为20(°)/s时,LSTM补偿后陀螺输出稳定在19.999~20.001(°)/s区间内,相较于陀螺原始输出误差降低0.008(°)/s。通过LSTM预测模型补偿,能够在环境变化、外部扰动或传感器故障时,通过陀螺仪提供更可靠的数据支持,维持飞行器的稳定性和安全性。  相似文献   

5.
光纤陀螺的标度因数与光纤环的长度、直径及光源的平均波长有关。在温度条件下,光纤环的长度、直径及光源的平均波长均会发生变化,进而导致光纤陀螺在高低温下的标度因数不同,影响温度环境下的光纤陀螺标度因数的重复性。提出了一种基于光纤陀螺波长控制的标度因数温度性能提高方法,该方法在光源驱动电路的桥式回路中增加了铂电阻组件,从而可自动调节光纤陀螺光源的管芯温度,进而控制光源平均波长的变化,以抵消光纤环有效面积因温度变化而对标度因数产生的影响,提高温度环境下光纤陀螺的标度因数重复性。试验表明,该方法将未补偿情况下光纤陀螺全温范围内的标度因数重复性(1σ)由271×10-6~280×10-6减小到了32.5×10-6~43.5×10-6,标度因数重复性误差减小了84%~88%,并验证了该方法的有效性。  相似文献   

6.
基于设计生产的一款每个敏感轴集合两种类型MEMS陀螺仪和加速度计的微惯性测量单元(MIMU),提出了一种MIMU精确标定测试方法。该方法以MIMU整体为标定对象,考虑了温度对零偏、标度因数的影响、传感器轴间不完全正交误差及结构安装误差等因素,对MIMU中各惯性传感器的初始零偏、标度因数、交叉耦合系数等参数进行了标定。产品标定测试结果证实了该方法的有效性。  相似文献   

7.
研究了振梁加速度计温度误差建模及补偿问题。分析了振梁加速度计受温度影响的主要因素,应用最小二乘算法得到零偏、标度因数与温度的多项式拟合关系,进而得到振梁加速度计的温度误差模型。利用该误差模型进行温度补偿。结果表明:经过温度建模和补偿,振梁加速度计精度有明显的提高。  相似文献   

8.
温度是影响加速度计标度因数的最主要因素,标度因数的温度系数是评价标度因数随温度变化的程度.本文根据悬丝支撑的摆式加速度计工作原理,分析了温度变化对标度因数的影响,同时给出了标度因数温度系数的补偿原理和方法,并通过试验进行了验证.  相似文献   

9.
本文介绍一种温度补偿电路,利用热敏电阻的温度特性,对加速度计标度因数进行温度补偿,使加速度计在工作温度范围(-40℃ 60℃)标度因数较稳定,温漂小。  相似文献   

10.
标度因数温度稳定性是微机电陀螺的关键指标之一,是评价陀螺温度性能的重要依据。推导并分析了温度对陀螺标度因数的影响,指出驱动模态振动位移、检测通路电路增益及两模态频差是影响陀螺标度因数温度稳定性的3个重要因素,测试了对标度因数影响较大的电路增益和频差在温度变化条件下的变化。对此设计了基于增益在线辨识技术的标度因数温度补偿方案并进行了数值及宏模型仿真,通过在驱动端和检测端施加一远离陀螺工作频率的辅助信号实时辨识出电路的增益变化,进而进行增益补偿,同时对陀螺频差变化带来的影响也进行了补偿。仿真结果表明该方法能够大幅提高陀螺标度因数的温度稳定性,由未补偿下的7.93×10~(-4)/℃降至1.0×10~(-5)/℃以内,改善幅度达98%以上。  相似文献   

11.
捷联惯性测量系统中陀螺仪线性度分段补偿方法研究   总被引:1,自引:0,他引:1  
某型小型化捷联惯性测量系统的陀螺仪线性度在不同角速率下差异较大,提高精度需要修改硬件。本文在硬件不变的情况下,提出了一种分段补偿的软件设计方法,即在不同的速率点采取不同的标度因数。试验数据表明,补偿后的陀螺仪线性度得到提高,达到指标要求,证明此方法是有效的。  相似文献   

12.
为了提高某小型化制导仪中的低精度三轴MEMS(Micro-electromechanical Systems)陀螺仪的测量精度,建立了误差补偿模型,并基于三轴转台安排了标定试验,求得模型参数,并进行解耦验证。由于惯性器件温度漂移和温度测量过程中的滞后现象,针对陀螺仪进行-40℃~50℃的温度标定试验,采用一元高阶模型对陀螺仪温度漂移误差进行补偿,并通过MATLAB对该温度范围内的标定测试数据进行曲线拟合,得到零位相对温度变化的的拟合函数,并分离出相应的系数。试验结果表明,采用该种标定与误差补偿方法比传统方法节省了大量时间和人力,而且还能够快速标定出温度系数,从而有效地提高了陀螺仪的测量精度。  相似文献   

13.
本文分析了挠性陀螺仪用差动式电感传感器的输出特性,指出了该类型传感器的标度因数及干扰力矩两参数对提高挠性陀螺仪精度的重要性,并利用多目标最优化问题中的目标规划模型线性逼近法对这两项参数进行最优化设计,找出传感器的初始气隙、线圈匝数和激磁电压的最优值。研究表明,选用合适的初始气隙、线圈匝数和激磁电压,可以在有限条件下尽量提高传感器的标度因数,最大限度地减少干扰力矩,从而大大降低挠性陀螺仪的干扰漂移。  相似文献   

14.
为满足捷联惯性测量装置快速启动的要求,研究了陀螺仪零次项误差随温度变化的规律,建立了陀螺仪零次项误差随温度变化的模型,提出了一种可以使用软件对温度带来的误差实时进行补偿的方法,并通过试验验证了温度模型的准确性和补偿方法的有效性。  相似文献   

15.
为了消除环境温度变化对悬丝支承型加速度计精度的影响,采用最小二乘法拟合建立了-50~68℃温度范围内加速度计模型系数零偏K0和标度因数K1的温度模型。由TMS320F2812 DSP和测温模块LM47172组成的硬件系统,根据温度模型对加速度计输出进行补偿后,加速度计输出的拟合均方根误差保持在10-4g数量级以内,比未采用温度补偿时提高了一个数量级,补偿效果明显。  相似文献   

16.
针对石英挠性加速度计标度因数非线性误差主要来源于力矩器磁路性能非线性及不同温度下加速度计参数随力矩器中永磁体磁性能变化产生漂移的问题,建立了力矩器的1/4二维有限元分析模型,对使用新型永磁体加速度计力矩器磁路进行计算,得到了不同结构下工作气隙磁密分布规律及不同温度下工作气隙磁密的温度系数.依据仿真结果,优化设计后的气隙磁密线性长度增加了72%,实测数据证明该方案加速度计的二阶非线性误差优于5×10-6,同时该方法为仿真计算加速度计标度因数的温度系数提供了新思路.  相似文献   

17.
光纤旋转系统的安装误差、标度因数误差等误差参数会随着时间而改变,而惯性器件误差是导航过程中误差的主要来源,因此在系统自对准的同时对关键误差参数进行标定能够提高系统的导航性能。为了在不显著增加光纤旋转系统准备时间的条件下,结合光纤旋转系统特点,提高旋转系统的导航精度,将对光纤旋转系统扰动基座下的自对准技术进行研究。提出了一种优化改进的旋转路径和自标定自对准流程,并对旋转路径进行了可观度分析,在该旋转路径下采用了Kalman滤波算法对陀螺的安装误差、陀螺标度因数误差、加表零偏进行估计并补偿。仿真与系统试验结果表明,采用该方案后,系统速度误差有明显降低。  相似文献   

18.
光纤陀螺仪在随机误差方面表现出极佳的性能优势,但受限于其标度因数不理想的现实。针对航海用长航时、高精度光纤陀螺惯导系统的使用需求,设计了基于光纤陀螺数字信号实现载体三维角运动隔离的同时完成惯性测量装置的旋转调制功能,可有效减小光纤陀螺标度因数误差与载体运动角速度的耦合误差,同时充分发挥光纤陀螺随机游走小的精度优势。理论仿真验证了光纤惯导稳定平台加旋转调制方法的优越性和可行性,为光纤陀螺惯导系统在高精度导航领域中的应用提供了技术基础。  相似文献   

19.
对微机电系统(MEMS)惯性测量组合(MIMU)的主要误差项进行分析,提出一种针对MIMU整体的误差补偿模型,模型囊括MEMS惯性传感器自身的零漂、互耦、标度因数非线性等误差,以及传感器安装误差、系统电路漂移等.根据模型设计整体标定和补偿方法,并用最小二乘法系统求解模型中的69个误差系数,避免单一传感器误差补偿的片面性.针对MEMS传感器明显的温度非线性,利用分段补偿的方法将所研制的MIMU的全温范围分成3段,分别求解各分段误差模型的误差系数进行补偿.经实验论证,该方法能有效地抑制多种误差项对MEMS传感器精度的影响,使MEMS陀螺和加速度计的精度提升1-2个数量级.  相似文献   

20.
为了提高双轴旋转惯导重要参数标定的快速性和精度,提出一种快速自标定方法。通过设置不同的标定路径可以在10 min内完成陀螺和加速度计的零偏以及标度因数误差的标定。该方法利用基于姿态误差观测的卡尔曼滤波完成陀螺零偏的估计。通过六位置翻滚并以速度误差作为观测量进行卡尔曼滤波,完成加速度计的零偏及标度因数误差的标定。使天向陀螺绕方位轴旋转4周,使水平陀螺绕水平轴转动4周,通过计算旋转前后的姿态误差完成陀螺标度因数误差的估计。仿真和试验结果表明,该方法可以实现双轴旋转惯导重要参数10 min内完成自标定,且具有较高的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号