首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
气膜冷却在保护高温部件的同时,主流与冷气干涉会形成复杂的涡系结构并造成掺混损失,研究二者之间的作用机理对指导气冷涡轮优化设计具有重要意义。本文采用DES (Detached-Eddy Simulation)方法对平板圆柱气膜孔的流场进行非定常数值模拟,分析了涡系演变规律以及掺混损失。结果表明:随着吹风比的提高,冷气射流与主流的流动掺混过程表现为两种不同的模式,低吹风比时下游冷气主要受顺时针方向的迎风涡控制,高吹风比时逆时针方向的迎风涡和顺时针方向的背风涡同时控制下游冷气运动;频谱分析显示,流场扰动存在着明显的倍频关系,基频信号由脱落涡产生,频率大小与吹风比呈线性关系;损失分析表明,流场损失主要由冷气与主流的温差换热导致,占总熵损失的90%以上。  相似文献   

2.
高雷诺数湍流横侧射流的大涡模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
采用大涡模拟(LES)方法研究横向主流与壁面射流均为高雷诺数的壁面横侧射流(JICF),采用动态Smagorinsky涡粘模型对亚格子尺度进行封闭。数值模拟结果中,近场和远场的平均速度、均方根值均与实验结果符合很好。瞬时压力等值面在射流迎风侧与射流迹线成正交关系,表明JICF近场迎风涡是由于射流出口上游剪切层Kelvin Helmholtz不稳定性引起的。基于长度尺度RD,Broadwell和Breidenthal提出了射流迹线公式,通过拟合数值模拟结果得到公式中常数A=1.35,B=0.3。采用平均流线、平均场涡量与Q准则分析三维涡旋结构。横向主流遇到射流后发生夹带现象,在射流出口下游受涡旋结构的影响发生卷起;平均涡量等值面表明,反向旋转涡对(CVP)的涡旋方向与射流出口下游马蹄涡两个分支的涡旋方向相反;由于横向主流和射流雷诺数较高,Q准则表征的涡旋结构在射流出口下游一倍射流直径位置开始发生破碎。  相似文献   

3.
为了研究射流涡发生器对激波边界层作用所诱导的流动分离控制机理及其流场特性,基于大涡模拟(Large eddy simulation)方法和高阶TCD/WENO混合格式,对来流马赫数Ma=2.5情况下,平板上射流涡发生器对激波与边界层相互作用所诱导流场进行了数值模拟。结果表明,射流涡发生器对激波边界层的流体分离有一定的抑制作用,与无控制情况相比,射流作用下进出口总压恢复系数由85.9%提高到94.6%。射流尾涡主要集中于一环状区域内,在该区域内,入射激波与马蹄涡、桶形激波上方的涡管以及剪切涡相互作用,导致整体尾流被激波往下压缩。同时在激波的压缩下,各涡之间相互缠绕、挤压合并,形成多个流向小涡结构,将边界层外的高速流体卷入边界层内,从而增加边界层底层能量,达到抑制流动分离的目的。  相似文献   

4.
为探究端壁合成射流对高负荷涡轮叶栅中涡系结构和流动损失的影响,采用非定常数值模拟方法分析了不同激励参数下合成射流对Durham叶栅流动损失的控制效果以及涡系结构和流动损失的对应关系。结果表明,合成射流减小了前缘马蹄涡和通道涡的尺度,削弱了来自相邻叶片压力面的横向涡,略微增强了壁角涡,并间接削弱了壁面涡;在无量纲幅值和频率分别为0.073和1时,控制效果最佳,总压损失系数减小约为10.72%;从控制机理上讲,合成射流加强了主流和射流下游边界层的掺混,增加了边界层动量,从而削弱了马蹄涡;合成射流影响了叶片压力面的流动分离,改变了由于分离产生低能流体的位置和范围,从而削弱了横向涡。由于漩涡的削弱,流动损失也随之减小。  相似文献   

5.
为揭示2元圆转矩喷管尾喷流强化掺混的内在机制,应用大涡模拟(LES)方程对2种相同进、出口直径的喷管模型(轴对称、2元圆转矩)在Ma=0.8、高雷诺数(2×10~5)条件下进行了数值模拟计算。结果表明:与轴对称喷管相比,圆转矩喷管射流掺混效应增强,速度衰减快,核心区长度和高温区域面积减小。同时尾喷流拟序结构变化说明:2种喷管主要拟序结构均包含涡环、涡辫、发卡涡、螺旋涡等相似结构;但圆转矩喷管在射流近场诱导出的涡旋更丰富,边角剪切涡发展更快,形成明显的CVP结构,导致其射流柱失稳时刻提前、距离缩短;同时,喷管形式的改变使得射流剪切层内雷诺应力增大,速度脉动增强。拟序结构发展及雷诺剪切应力变化说明在射流流场中涡旋发展耗散速度增大、速度边界层脉动增强、射流柱易失稳是导致射流掺混增强的本质因素,为异形喷管的强化掺混机理提供了依据。  相似文献   

6.
为了研究超声速燃烧室内燃料与空气快速掺混过程的流场特性,基于可压缩Navier-Stokes方程,采用大涡模拟方法和高精度WENO-TCD混合格式对来流马赫数为2.68,喷压比为36的超声速横向射流流场结构进行数值研究。数值结果清晰描述了超声速主流与横向射流相互作用过程的流场结构特征,得到了三维激波形态的演变规律以及它们在强化混合过程中的作用。另外,因桶形激波背风面低压区处的斜压效应,射流气体在桶形激波背风面形成一对螺旋向上的反向涡对,反向涡对的卷吸作用诱导进入壁面边界层的主流向上运动,形成冲击射流。冲击射流以v=557m/s的法向速度向上冲击桶形激波背风面,因而在桶形激波背风面留下类三角锥面凹痕。  相似文献   

7.
波瓣混合器涡系结构及射流掺混机理的数值研究   总被引:2,自引:1,他引:1  
借助流体力学软件ANSYS CFX,对波瓣混合器射流掺混流场进行了全三维定常数值模拟,研究了流场中各涡系结构的形成机理及发展过程,并详细探讨了其加速射流掺混过程的作用机制.结果表明:基于SST(shear stress transport)模型的封闭N-S方程能较好地模拟波瓣混合器射流掺混过程,波瓣特殊几何外形诱导产生的流向涡主要通过扭曲内外涵交界面的间接方式加速射流掺混过程,波瓣下游剪切层中K-H(Kelvin-Helmholtz)不稳定性发展而成的正交涡是直接加速射流掺混的关键因素,波谷附近二次流之间的相互作用所产生的通道涡对该区域内的射流掺混有明显的加速作用,受波瓣前缘切割的边界层在径向压力梯度作用下沿波瓣表面卷起而形成的马蹄涡对射流掺混的影响不是特别明显.   相似文献   

8.
为了研究脉冲气膜冷却的流动特性,采用基于高阶对称加权本质无振荡(WENO)-Roe格式和隐式牛顿迭代时间推进、动态亚格子模型和预处理技术下的大涡模拟(LES)计算方法,对吹气比为1.0下的斜管横向射流进行了稳态和脉冲两种不同工况下的数值模拟.计算结果显示了射流流场中存在发卡涡结构,研究表明射流孔进口位置的脉冲改变了射流出口拟序结构,即改变了射流与主流的掺混过程.   相似文献   

9.
采用基于SST湍流模型的延迟分离涡模拟(DDES)方法,对吹风比为0.5的平板孤立方孔横流射流进行数值模拟研究,并与实验测量结果进行对比;同时,基于捕捉到的流场大涡拟序结构,分析了射流与主流掺混及损失机理。研究结果表明:气膜冷却流场中存在复杂的大涡拟序结构,这种强三维流动对冷气覆盖效果和掺混损失起主导作用;与传统的RANS和URANS方法相比,SST-DDES方法不仅在射流下游平均流场的预测方面具有更高精度,而且还能捕捉更加丰富的射流/主流掺混过程流场细节及其时空演化特性,将SST-DDES类RANS/LES混合方法的应用领域扩展到横流射流类复杂流动的研究中具有较好的可行性。  相似文献   

10.
采用高精度有限差分格式求解非定常N-S方程组,对低雷诺数下二维涡轮叶栅流动进行了直接数值模拟,计算了雷诺数为10000,VKI涡轮叶栅在0°,8°以及-8°攻角下的流场,对涡轮叶栅非定常流动机理做了初步的探讨。计算结果表明:在叶栅尾缘处,逆时针方向和顺时针方向的主涡交替在壁面产生,并和主流相互作用产生二次涡,而当二次涡与主流连通发生掺混时,将引起主涡被分割并从叶片表面脱落;攻角在一定范围内的变化对VKI涡轮叶片表面边界层发展影响不明显。文中还对尾迹区的统计量特性和速度亏损特性等进行了研究。   相似文献   

11.
受限空间内斜向冲击凹柱面流场结构试验   总被引:3,自引:2,他引:1  
以冲击旋流强化换热为研究背景,通过粒子示踪的流场显示技术,对受限空间内斜向冲击凹柱面的流场结构开展了试验研究.通过改变冲击雷诺数、冲击角度、相对冲击间距(冲击间距和冲击孔直径之比)以及相对曲率(冲击孔直径同凹面靶板直径之比)等参数,分析了受限空间中,斜向冲击曲率表面后产生的涡系结构及其发展和变化规律.流场显现结果表明:随冲击雷诺数的增加,在冲击滞止区域两侧都能形成稳定的旋流结构,并且在受限空间的角部,进一步形成了诱导涡.试验中发现随着冲击雷诺数的增加,冲击气流与壁面分离处对应的圆心角增大,分离推迟;随着相对冲击间距值的增加,气流与壁面分离处对应的圆心角越来越大,相对于受限空间的大小,诱导涡的范围越来越小.由于冲击角度的影响,冲击射流在滞止区域左侧射流(相对冲击角度较小)与壁面分离比在右侧(相对冲击角度较大)提前,同时更容易产生旋流.   相似文献   

12.
轴向旋涡强化矩形喷流掺混的机理研究   总被引:2,自引:1,他引:2  
本文介绍了在低速射流风洞上开展的二维喷管来流带旋涡的模拟实验。通过流场观察,壁面静压和矩形喷流三维流场的测试。  相似文献   

13.
本文研究了细长三角翼在脱体涡流型时变攻角所产生的非定常气动力的机理,并采用了一种时间历程的,考虑翼面前、后缘涡面随局部气流拖出并由时间发展逐步形成的数值方法,称之为涡面生成法,计算结果表明该方法是稳定和有效的。  相似文献   

14.
为改善气膜冷却效率,提出了在倾斜气膜孔前缘内置扰动条的结构。通过与典型的圆柱形气膜孔流场的对比研究,总结出内置扰动条对流场的影响规律。研究结果表明,在射流-横流流场中,内置扰动条减小了射流向主流的穿透,使反向旋转涡对向壁面靠拢,穿透顶点下移;扰动条使下游反向涡对的强度增大;随着吹风比的增大,气膜孔下游同一位置处的流向涡强度增大,这一方面增加了主次流的相互掺混,另一方面也增大了流体沿展向的相互掺混。  相似文献   

15.
The present paper investigates the impact of the velocity and density ratio on the turbulent mixing process in gas turbine blade film cooling.A cooling fluid is injected from an inclined pipe at α=30° into a turbulent boundary layer profile at a freestream Reynolds number of Re∞=400000.This jet-in-a-crossflow(JICF) problem is investigated using large-eddy simulations(LES).The governing equations comprise the Navier-Stokes equations plus additional transport equations for several species to simulate a non-reacting gas mixture.A variation of the density ratio is simulated by the heat-mass transfer analogy,i.e.,gases of different density are effused into an an air crossflow at a constant temperature.An efficient large-eddy simulation method for low subsonic flows based on an implicit dual time-stepping scheme combined with low Mach number preconditioning is applied.The numerical results and experimental velocity data measured using two-component particle-image velocimetry (PIV) are in excellent agreement.The results show the dynamics of the flow field in the vicinity of the jet hole,i.e.,the recirculation region and the inclination of the shear layers,to be mainly determined by the velocity ratio.However,evaluating the cooling efficiency downstream of the jet hole the mass flux ratio proves to be the dominant similarity parameter,i.e.,the density ratio between the fluids and the velocity ratio have to be considered.   相似文献   

16.
王璞  张海滨  白博峰 《推进技术》2019,40(8):1792-1798
空心锥形喷雾与横向气流的掺混是强化气液掺混的一种重要方式,目前对这一过程尚缺乏深入研究。为了研究横向气流对空心锥形喷雾射流液滴群的夹带特性,采用PIV可视化技术对掺混流场进行测量。结果表明:空心锥形喷雾与横流的相互作用在气流流向方向上诱导出现明显的剪切层及不稳定涡结构,对雾化液滴的扩散产生重要影响并引起液滴在剪切层区域的富集。在分析横流雷诺数、喷雾液滴雷诺数与液滴数流率对掺混流场剪切层结构影响规律的基础上,基于量纲分析和回归分析方法,建立了空心锥形喷雾与横向气流掺混流场中剪切层轨迹线的无量纲预测关联式。  相似文献   

17.
《中国航空学报》2020,33(3):840-851
The individual influence of pitching and plunging motions on flow structures is studied experimentally by changing the phase lag between the geometrical angle of attack and the plunging angle of attack. Five phase lags are chosen as the experimental parameters, while the Strouhal number, the reduced frequency and the Reynolds number are fixed. During the motion of the airfoil, the leading edge vortex, the reattached vortex and the secondary vortex are observed in the flow field. The leading edge vortex is found to be the main flow structure through the proper orthogonal decomposition. The increase of phase lag results in the increase of the leading edge velocity, which strongly influences the leading edge shear layer and the leading edge vortex. The plunging motion contributes to the development of the leading edge shear layer, while the pitching motion is the key reason for instability of the leading edge shear layer. It is also found that a certain increase of phase lag, around 34.15° in this research, can increase the airfoil lift.  相似文献   

18.
小冲击间距下带倾角冲击凹柱面流场结构实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对带倾角冲击凹柱面靶板的流动特性和流场结构研究,采用烟线法开展了流场显现实验研究,重点分析了旋流产生和发展的规律。试验中通过改变冲击雷诺数、冲击间距比(冲击间距和冲击孔直径之比)、冲击角度以及凹柱面相对曲率等参数,分析了涡出现的位置、结构等随这些参数的变化规律。研究结果表明:由于冲击射流同周围静止空气之间的粘性作用、气体在凹柱面上运动、脱离的共同作用下,带倾角冲击凹柱面靶板产生了不同的旋流结构。实验中,随冲击雷诺数的增加,在冲击滞止区域两侧流体冲击靶板分离处的圆心角增大,分离推迟;由于冲击角度的影响,相对冲击角度较小侧射流与壁面分离比在较大侧提前,且在相对冲击角度较小侧更容易产生旋流结构。实验中改变的参数均影响了旋流结构及其发展特性,并且影响规律表现出较强的关联性。  相似文献   

19.
基于PIV技术的单圆孔脉冲射流流场特征   总被引:1,自引:1,他引:0  
对稳态射流及脉冲射流冲击靶板时的流场特性结构进行了探索和分析。采用高频粒子图像测速技术,在射流管口到冲击靶板间距为6倍管径的条件下,对稳态射流进口雷诺数为6 000的稳态射流及脉冲频率为20 Hz的脉冲射流进行了实验测量,得到了射流核心区、壁面射流区及滞止区内的速度分布。研究发现:①由于射流剪切作用的影响,脉冲射流核心区的最大轴向脉动速度为稳态射流的3倍。②滞止区内,由于射流的剪切作用和壁面的滞止作用,导致了脉冲射流轴向速度梯度最大为稳态射流的2倍,同时,滞止区内的最大脉动速度是稳态射流脉动速度的3倍。③脉冲射流对壁面的卷吸以及旋涡的产生和传播过程,破坏了壁面射流区稳定的速度边界层。相比稳态射流,脉冲射流的流场增加了湍流相干结构的含能并产生周期性的大尺度卷吸涡。  相似文献   

20.
应用多分量准二维变分模态分解技术,对直接数值模拟的湍流边界层的流向-法向平面进行了分解。通过对从低雷诺数到中等雷诺数(Reτ=400~1750)各个工况的瞬时流场的观察,定性地得到了不同模态所对应的物理结构特征。通过两点相关云图形态和倾斜角度的比较,定量地对比了不同模态对应的拟序结构倾角随法向高度的变化。一阶模态主要对应大尺度扫掠/喷射事件,第二阶模态则对应近壁流向涡结构。两阶模态的拟序结构倾角随法向高度的变化趋势与雷诺数呈弱相关,表明大小尺度模态的几何特征在所研究的雷诺数范围内存在自相似性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号