首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 406 毫秒
1.
氢燃料超燃燃烧室流场结构和火焰传播规律试验研究   总被引:3,自引:1,他引:3  
采用试验方法研究了不同当量比条件下的氢气燃烧流场结构和火焰传播规律。采用壁面测压、纹影、差分干涉、火焰自发光照相以及OH-PLIF等测量手段获取流场信息,并发展了纹影、差分干涉和PLIF同步测量的试验方法,获取了流动结构和火焰的耦合测量结果。结果表明:在所研究的5个状态中,当氢气当量比大于0.17时,燃烧流场结构不稳定,火焰分布呈现破碎状,火焰在燃烧室上下壁面之间来回传播;当氢气当量比小于或等于0.17时,燃烧流场结构稳定,火焰呈现连续分布,火焰稳定分布于凹槽下部剪切层内。  相似文献   

2.
隔离段是超燃冲压发动机的重要组成部分,主要作用是隔绝燃烧与进气道的相互干扰。隔离段中存在的复杂流动现象一直是人们研究和关注的重点。利用三维数值模拟方法对矩形隔离段激波串特性影响因素进行了研究,主要分析了不同来流马赫数、单侧和对称扩张角以及壁面凹腔等因素影响下的激波串特性。结果表明:在高来流马赫数条件下,隔离段内激波串长度变短,隔离段抗反压能力增强,总压损失增大;在单侧和对称扩张隔离段内的激波串结构存在差异,且隔离段后的流场总压损失与扩张形式无关;隔离段添加壁面凹腔后,在不同反压下会出现2种模态(亚临界凹腔模态和超临界凹腔模态),2种模态下隔离段内激波串结构及流场参数特性有所不同,超临界凹腔模态下隔离段抗反压能力下降,总压损失增大。本文的研究结果可为隔离段和燃烧室设计及试验提供参考。  相似文献   

3.
在直连式脉冲燃烧设备上,开展了模拟Ma4,总温935K 来流参数下的超燃发动机乙烯点火试验。试验利用了火炬点火器和引导氢气的辅助点火方式,实现了乙烯的点火和稳定燃烧。结合壁面压力测量、高速摄影和数值模拟方法,分析点火及火焰传播过程发现:(1)在现有的注油方式下,回流区有利于点火,剪切层和凹槽后部是稳焰的主要区域;(2)点火成功后,影响凹槽稳焰的主要因素为燃料与氧化剂的浓度,剪切层内和凹槽后部持续卷吸氧化剂,因而能够维持稳定的燃烧;(3)凹槽下游注入的燃料发生燃烧造成流道一定程度壅塞,是提升燃烧室压力水平的重要原因,但该处的燃烧不能够稳定,引起燃烧室内压力的振荡,而导致该处不稳定燃烧的2个主要因素为变化的氧含量和较高的流速。  相似文献   

4.
煤油 氢双燃料的超声速燃烧室中的自点火和燃烧稳定特性在直联式试验装置上进行了实验研究。实验空气总温 1 650~ 1 980K ,总压基本保持在 1 .8MPa左右 ,燃烧室进口M数为 2 .5。用激光粒度仪测量了在加压下煤油的雾化程度。为了寻找能点燃并维持煤油稳定燃烧的最低氢当量比 ,设计加工了四种不同构型引导火焰与凹稳焰一体腔结构 ,利用氢引导火焰局部地加速煤油的化学反应和凹腔的联合促进作用与优化结合 ,发现在没有强迫点火能源条件下点燃并维持煤油稳定燃烧的最低氢当量比能降低至 0 .0 3。燃烧室的性能用简化的一维计算机程序SSC - 3作了初步估算。在长度 42 5mm的燃烧室中获得了煤油的燃烧效率 50 %。引导火焰凹腔一体化结构对点火特性和性能的影响作了讨论  相似文献   

5.
为研究动态反压下的激波串特性,针对一种带凹腔的二元进气道/隔离段构型,在马赫数为6的来流下模拟了堵塞比从0.20增长到0.32再保持不变的动态节流流动,分析了堵塞比增长时间(1~10 ms)对激波串运动的影响。结果表明:激波串在节流变化初期向下游运动,随后向上游运动并最终稳定在某一位置。当堵塞比增长时间在5 ms以内时,激波串向下游和向上游运动的幅度分别为3 mm以内和约18 mm,且激波串运动滞后于节流变化,滞后时间随着增长时间的延长而缩短。当增长时间大于等于6 ms时,激波串可向下游运动到凹腔中部,幅度可达31 mm,并伴随着流动振荡;向上游运动幅度仍约为18 mm,激波串运动与节流变化近似同步。分析表明:较短增长时间工况下,激波串运动滞后主要是因为节流引起反压升高、传播时间大于堵塞比增长时间;较长增长时间工况下,凹腔内流动振荡主要是堵塞比增长初期凹腔亚声速区排出流量增加,回流区横向尺度减小,导致凹腔超声速区膨胀并出现“壅塞”,产生分离激波与回流区相互作用、发生振荡。工程设计时应考虑激波串运动的滞后及其对流动性能的影响。  相似文献   

6.
回流燃烧室与直流燃烧室不同,结构复杂,为了研究回流燃烧室内的流动以及燃烧特性,采用粒子图像测速仪(Particle image velocimetry,PIV)测量对其冷态流场开展研究,通过火焰自发辐射手段得到了燃烧室火焰结构以及火焰传播过程。研究结果表明:回流燃烧室流场不具有对称性,内外壁面速度分布不相同,压损的改变对燃烧室流场结构影响较小,随着压损的增加,速度值增加。燃烧主要在主燃区和中间区进行,火焰呈一定的“月牙”形向外燃烧。燃烧室点火过程可分为火核生成阶段、火核发展阶段、点火成功阶段和火焰稳定阶段4个阶段,回流涡着火是成功点火的关键。熄火时,火核向回流区后部靠近,火焰根部逐渐远离旋流器出口位置,火焰从正常燃烧时的月牙形结构演变为单股火焰。  相似文献   

7.
纯净空气来流下的超声速燃烧实验装置及其初步实验结果   总被引:4,自引:0,他引:4  
采用电阻加热的连续式实验设备,在燃烧室进口气流为高温纯净空气、马赫数Ma=2、总温Tt=1000K,总压Pt=0.8MPa条件下,进行了不同当量油气比的氢和乙烯燃料的超声速燃烧室直连式实验.采用从壁面垂直于主流喷射燃料和以氢作为先锋火焰,实现了乙烯燃料的可靠点火和稳定燃烧.实验测量了燃烧室的壁面压力、空气流量、燃料喷射压力、喷管进口总温等参数,并拍摄了燃烧室出口火焰.本文实验采用的电阻加热设备具有实验介质无污染、稳定运行时间长、工作性能稳定、成本低、操作简单等优点,其主要部件电阻加热器出口的最高温度可达600~1000K,对应的流量为1.5~0.73kg/s、加热器功率为750KW.  相似文献   

8.
采用激波风洞-激波管组合设备对预混的碳氢燃料——空气混合物的点火与超声速燃烧进行了研究。为缩短碳氢燃料-空气混合物的点火延迟时间,通过激波风洞喷管入口与接触面之间的激波反射对经过雾化与气化的碳氢燃料(汽油)进行预热;此外,由燃烧驱动激波管产生的高温燃气作为引导火焰点燃激波风洞产生的预混与预热的超声速碳氢燃料——空气混合物。采用纹影系统对超声速可燃气流中的火焰传播进行流场显示。实验结果表明,上述方法可将碳氢燃料——空气混合物的点火延迟时间缩短至小于0.2ms,同时还得出了火焰相对于超声速可燃气流的传播速度。  相似文献   

9.
平面激光诱导荧光(PLIF)技术能够高时空分辨成像火焰结构并用于研究超声速燃烧机理。利用OH-PLIF与CH-PLIF技术研究了超声速燃烧的火焰结构。其中,利用OH-PLIF技术对燃烧室中3个展向截面与2个流向截面的凹腔稳定火焰反应区结构进行成像,利用CH-PLIF技术观测凹腔火焰放热区结构。实验结果表明:全局当量比较低时燃烧主要发生在凹腔中,OH沿中轴线对称分布;高当量比时火焰位置更高,OH主要沿燃烧室两侧壁面分布;CH所存在的超声速燃烧放热区呈现高度褶皱和破碎结构,放热区分布在比反应区更窄的区域。  相似文献   

10.
超声速燃烧室等离子体点火实验研究   总被引:40,自引:0,他引:40  
针对超燃冲压发动机在较低飞行M数(M0≤4)下的起动点火问题,利用氢氧燃烧加热脉冲风洞,在超声速燃烧室进口M数M=2、总温T0=960K条件下,分别采用等离子体点火器+先锋氢燃料和大功率等离子体点火器,探索了在超声速燃烧室中,实现煤油点火和稳定燃烧的方法.采用等离子体点火、凹槽火焰稳定器和从壁面喷射燃料方式,实现了煤油的可靠点火和稳定燃烧.研究表明,在燃烧室进口M=2、总温T0=960K时,采用大功率等离子体点火器,不需要先锋燃料,可以直接点燃煤油.  相似文献   

11.
为了研究超燃冲压发动机燃烧室流动状态下的富燃燃气点火过程,设计建立了一套用于研究高速乙烯射流在富燃燃气中点火过程的高温同轴射流试验装置。试验研究了伴流当量比1.4和1.6,乙烯射流喷注压力2×105Pa和3×105Pa参数下的点火过程,试验过程中乙烯射流均能实现稳定燃烧。结合高速摄像机和后处理分析点火过程发现:(1)乙烯高速射流在富燃燃气中的点火过程主要分为4个阶段:(a)主流和伴流掺混;(b)主流和空气发生剧烈化学反应;(c)火焰在下游发生局部熄火;(d)火焰达到稳定状态。(2)伴流当量比1.4比伴流当量比1.6更有利于高速流动下的点火。(3)乙烯射流速度的增大会导致不充分燃烧,火焰亮度变弱。  相似文献   

12.
在来流总温1085K、进口马赫数2.0下开展了煤油燃料超声速燃烧试验,使用高速摄像观测了火焰的形态和结构,采用平面激光诱导荧光技术(PLIF)观测了煤油和OH的分布,结合数值模拟结果分析了燃烧室的火焰稳定机制。测量结果显示:燃烧反应主要发生在射流的下游区域和凹槽区域内,随着燃料当量比的增加,火焰传播角度及火焰向主流的穿透高度增加。数值模拟结果与实验测量吻合较好。火焰稳定机制分析显示:液态煤油喷入燃烧室内,主要分布在下壁面附近的流场中,燃烧产生的高温燃烧产物通过凹槽剪切层与回流区之间的相互作用,进入凹槽并为剪切层中的空气-煤油混合气体提供稳定的热量和中间产物,使得火焰基底能够稳定在剪切层内,并以相对固定的角度向主流流场中传播。  相似文献   

13.
爆震、超级爆震等非正常燃烧现象是限制小型强化点燃式发动机热效率进一步提升的突出瓶颈。爆震或超级爆震发生时总会伴随着湍流火焰-冲击波的相互作用,因此对湍流火焰-冲击波的相互作用的研究是揭示其机理的关键。本文通过在可视化定容燃烧弹内安装孔板实现火焰过孔板加速并产生冲击波,并通过改变初始热力学条件和孔板的参数,来实现不同强度的湍流火焰和冲击波及其相互作用过程。基于该燃烧装置开展了火焰加速、冲击波的形成以及湍流火焰-冲击波相互作用导致不同燃烧模式的研究。根据燃烧室末端火焰传播和压力振荡情况,总结出5种燃烧模式,其中发生自燃的燃烧模式的压力振荡幅值均超过4.5MPa,是未发生自燃时的4~40倍。因此,湍流火焰-冲击波相互作用对燃烧压力振荡具有重要影响。  相似文献   

14.
高动态频响传感器及作动机构是高性能控制系统FADEC的关键技术之一。开发了一种基于被动火焰自发光谱的内窥式光纤火焰传感器进行光学诊断,初步验证了光纤火焰传感器数据的燃烧过程感知价值。基于中国科学院力学研究所的直连式超声速燃烧实验台,模拟了来流总温1475 K、总压1.68 MPa、马赫数5.6的发动机工作状态。在不同当量比和动量通量比条件下,使用新开发的内窥式光纤火焰传感器,测量了以CH*表征的燃烧释热率和以C2*/CH*表征的局部当量比。结果表明:内窥式光纤传感器可感知燃烧室释热率的时空演变特性;内窥式光纤传感器可感知频域燃烧振荡特性,实验表明燃烧过程可能存在展向的热声振荡现象;内窥式光纤传感器C2*/CH*光信号可感知局部当量比的时空演变特性,结合CH*光信号可应用于混合场与燃烧场关联性的研究;局部火焰质心位置的统计特征表征了剪切层稳焰模式和射流尾迹稳焰模式。  相似文献   

15.
环形燃烧室周向点火机理基础研究进展   总被引:2,自引:0,他引:2  
先进航空发动机普遍采用环形燃烧室结构,其周向点火联焰机理对发动机点火可靠性具有重要研究价值。由于实验室尺度模型实验成本低、测量精度高,已经逐渐成为实验研究环形燃烧室点火机理的重要途径。本文介绍了国内外几种典型的实验室尺度环形燃烧室模型及其相关研究,包括法国巴黎中央理工大学EM2C实验室的MICCA燃烧室模型;剑桥大学的预混/非预混环形燃烧室模型;慕尼黑工业大学的缩比燃气轮机环形燃烧室模型;浙江大学的环形燃烧室和涡轮耦合的TurboCombo模型。环形燃烧室周向点火过程一般分为3个阶段:(1)初始火核的形成;(2)火核扩张发展,在点火针附近喷嘴处形成单个稳定的旋流火焰;(3)火焰沿周向传播,依次点燃全部喷嘴后稳定燃烧。影响周向点火联焰过程的因素众多,机理复杂,已有的实验和数值计算对当量比、点火模式、热功率、流速、喷嘴间距等因素影响下的点火、熄火、火焰传播模式、周向点火时间等特征规律进行了丰富的研究。近年来,在环形燃烧室模型上也逐渐开展了气液两相喷雾燃烧的相关研究。同时,高时空分辨率的先进激光诊断方法的引入也将进一步推动点火机理的更深入研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号