首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
研究的主要目的是确定微型飞行器小展弦比机翼的低雷诺数升阻特性。通过风洞试验测量了几种不同外形机翼的升力系数和阻力系数。研究主要涉及了矩形、椭圆、齐莫曼和反齐莫曼四种平面形状的机翼,并对每种外形机翼分别进行了展弦比为1.0、1.5、2.0的比较试验,文中以矩形翼为例分析了展弦比对机翼升阻特性的影响。为了研究前缘后掠角对机翼升阻特性的影响,进行了后掠角分别为20°、30°和45°梯形机翼的气动试验。试验结果表明:在大部分迎角范围内,同其它外形机翼相比矩形翼具有更高的升力系数,反齐莫曼翼的升阻比最理想;在小展弦比范围内对于平板翼型的机翼,较大的展弦比不会给升力系数提高带来更明显的效果;后掠角20°和30°梯形翼的升阻特性相差不大,后掠角45°梯形翼具有较大的升力系数和阻力系数。  相似文献   

2.
双翼微型飞行器水平阵风响应实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在南航非定常风洞内,研究了一种双翼微型飞行器在水平阵风作用下的非定常气动特性变化,给出了模型迎角变化、风速脉动频率变化对微型飞行器气动特性的影响.研究表明:在来流减速和加速过程中,模型上的气动力发生很大变化,特别是在迎角较大的情况下;同时随着风速脉动频率的增大,升力系数的增加也很明显.分析认为由于翼面上的不同流态对风速脉动的响应不同,导致了翼面上流动结构的变化,从而使微型飞行器的升力特性发生改变.  相似文献   

3.
鸭式旋翼/机翼(CRW)飞机是一种新型复合升力飞机.旋转机翼的焦点位置、迎风面积随旋转机翼方位角剧烈变化,同时旋转机翼气动力受前机身上洗流影响明显,综合影响使得旋转机翼在旋转状态下全机气动特性随旋转机翼方位角剧烈变化.通过风洞试验对纵向气动特性进行了研究,结果表明:旋转机翼的升阻特性变化对全机升阻及俯仰特性的影响以振荡的形式表现,频率为旋转机翼的旋转频率,幅值都在固定翼状态稳态值的5%以上.  相似文献   

4.
设计研制了一种飞翼布局的柔性翼和刚性翼微型飞行器,并在风洞中研究了两种微型飞行器在定常风和水平阵风作用下的气动特性,给出了柔性翼和刚性翼微型飞行器气动特性的差别.研究结果表明:不论是在定常风情况下,还是在水平阵风环境下,柔性翼的气动特性要优于刚性翼结构,柔性翼具有延迟失速和缓和阵风影响的能力,有利于稳定飞行.PIV测量结果表明:由于柔性翼的变形使刚性翼和柔性翼翼面上的流态不同,从而使微型飞行器的气动特性发生改变.  相似文献   

5.
通过仿雨燕机翼的低速风洞测力实验,分析了以展向弯度变化为表现形式的柔性变形对大展弦比机翼纵向气动特性的影响.实验结果表明,这种柔性变形具有增升减阻的效果,可以增大仿雨燕机翼的最大升阻比,减缓失速,能够显著改善大展弦比机翼的纵向气动特性,对揭示鸟类的飞行机理和微型飞行器的设计具有重要的指导意义.  相似文献   

6.
微型扑翼的推进特性实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究微型扑翼的推力和推进效率特性,研制了基于虚拟仪器( Ⅵ)的微型扑翼风洞实验系统.该系统以西北工业大学现有微型风洞为基础,采用了高精度六分量天平、角度传感器.新型机翼扑动机构、可编程电源、工控机等设备,利用基于虚拟仪器(Ⅵ)的LabView软件对上述设备进行集中控制与数据处理.利用上述实验系统研究了风速、扑动频率、展弦比、根稍比及机翼扑动幅度对微型扑翼推力和推进效率的影响,总结出了微型扑翼推力及推进效率的基本规律,为微型扑翼飞行器机翼设计及飞行控制方式提供了参考.  相似文献   

7.
常规的仿鸟扑翼飞行器在飞行时机翼只是单纯地上下扑动.为提高扑翼飞行器横航向和航迹控制的品质,设计了一种机翼在扑动的同时可差动扭转的仿鸟扑翼飞行器;在低速风洞中对其进行了一系列测力试验,研究了可差动扭转扑翼飞行器的升力、推力特性,以及机翼差动扭转角、扑动频率、风速、机翼柔性对滚转力矩系数的影响;对设计的扑翼飞行器做了飞行试验,验证了设计的可行性,并与常规扑翼飞行器作了对比,试验结果表明:可差动扭转扑翼可以用于扑翼飞行器的横向控制,并且可以提高其抗风能力和航迹控制精度.  相似文献   

8.
提出了一种将柔性翼和刚性翼相结合的柔性-刚性混合翼微型飞行器新概念布局型式,通过与刚性翼微型飞行器的风洞对比试验研究了该新概念布局的气动特性.在此基础上,进行了柔性-刚性混合翼微型飞行器试验原理样机的飞行试验验证.风洞试验和飞行试验研究结果表明:柔性-刚性混合翼微型飞行器的新概念布局是可行的;与刚性翼微型飞行器相比而言,柔性-刚性混合翼微型飞行器具有更好的气动特性,对解决微型飞行器抗风稳定飞行问题是有效的.  相似文献   

9.
斜拉翼结构刚度分布与重量特性   总被引:1,自引:0,他引:1  
多学科优化设计的研究结果表明,斜拉翼在不增加悬臂翼结构重量的情况下能显著提高展弦比和降低诱导阻力,使得斜拉翼飞机整体性能明显优于悬臂翼设计.但这些研究没有对支撑结构与主翼之间采用何种联接型式给出相应的讨论,也未对机翼刚度布局情况给出相应参考,不利于飞机总体布局方案的选择.本文从力法入手,用四板模型简化斜拉翼结构剖面,给出常见斜拉翼和其支撑结构的刚度布局和联接形式以及结构重量遗传算法寻优的相关结果.结果表明,以铰链方式联接支撑结构与联接段结构的斜拉翼结构布局方式有最好的重量特性.  相似文献   

10.
两种布局微型飞机的风洞试验研究   总被引:2,自引:1,他引:1  
介绍了齐默尔曼和反齐默尔曼两种布局的微型飞机在西北工业大学低湍流度风洞进行风洞试验研究的情况.研究目的是探索微型飞机的风洞试验技术和获得两种布局微型飞机的低雷诺数气动特性.着重研究了风速、迎角对两种布局微型飞机气动特性的影响.研究结果表明:风洞试验是研究与微型飞机有关的低雷诺数气动特性问题的有效而又切实可行的途经;反齐默尔曼布局具有较高的升阻比和升力系数,是微型飞机理想的设计选择.试验结果可供微型飞机设计参考.  相似文献   

11.
本文介绍一种用于脉冲型高超声速风洞中的无挠性结构,并带有惯性补偿的铰链力矩三分量压电天平。在科学院力学所 JF-4B 炮风洞中进行了实验,文中给出其天平静校精度和实验结果。验证了天平的机械结构,灵敏度和补偿系统均满足设计要求,能成功地用于机动弹头控制翼气动力的测量。  相似文献   

12.
简述西北工业大学自适应壁风洞研究课题组在“八五”期间开展跨声速柔壁自适应壁风洞试验技术研究的主要研究工作成果。简介该校的高速柔壁自适应壁风洞的设计及主要参数,以及在该风洞中开展的低超声速消除波反射的研究、近声速的自适应壁风洞试验技术研究和跨声速自适应壁试验段优化设计的研究。  相似文献   

13.
本文介绍了一种由Hackett在1981年提出的利用测量风洞壁面静压来进行大迎角、大堵塞洞壁干扰修正的方法,并用该方法编写了Fortran程序。对四个几何相似不同尺寸的模型,在NH-2风洞中进行了试验,试验和计算的结果表明,堵塞度从1.56%到16.7%的四个模型,其升力系数和阻力系数经洞壁干扰修正后非常接近。但必须指出,对于带平衡缝的闭口回流风洞,从壁面测量所得到的静压必须加以修正,才能成功地应用这种方法。  相似文献   

14.
微型飞行器测量天平设计与风洞试验   总被引:3,自引:0,他引:3  
用三梁式、四梁式结构分别设计了用于测量微型飞行器气动性能的单分量、二分量和三分量应变天平4台.通过天平的地面静态校准给出了每台天平的使用公式,在专门设计建造的微型飞行器实验装置中,用软模型、硬模型、翼型进行了模型静态气动性能试验,用微型扑翼飞行器进行了单分量和二分量天平动态吹风试验,结果表明,所设计的天平具有较高的精准度和灵敏度,试验曲线光滑连续,实验数据可靠,为微型飞行器的研究提供了非常有效的测量手段.  相似文献   

15.
在分析螺旋桨噪声特性和声学实验对风洞的要求的基础上,结合NF-3风洞的特点和声学工程设计经验,对该风洞螺旋桨实验段进行了声学改造。检测结果表明,改造的效果令人满意,NF-3风洞已初步具备声学实验能力。  相似文献   

16.
为了克服自适应壁风洞在模型支撑方面的困难和加大试验模型,提高试验雷诺数,西北工业大学在高速二元柔壁自适应壁风洞中开展了半模型试验技术的研究。采用基于平均流线概念的二元计算方法和以消除模型轴线洞壁干扰为目的的三元计算方法,两种方法均以沿上下柔壁中线所实测的洞壁压力分布为计算依据。试验采用有对比试验数据的AEDCWIM1T洞壁干扰测压模型,堵塞比为3.38%。在所作的试验状态下其试验结果与AEDC4T风洞的实验结果比较吻合,表明在高速二元柔壁自适应壁风洞中采用半模型试验是可行的。  相似文献   

17.
结合边界层分离点附近的剪应力变化规律,提出了在飞行器外表面贴附微型传感器阵列的分离点检测方法,并给出了相应微型剪应力传感器阵列的设计方案.同时提出了基于三极管恒流源电流镜驱动电源设计和滤波衰减电路设计方案,并在NAGA0012标准翼型上实现了边界层分离检测系统集成,最后,在低速风洞实验中对传感器阵列的性能和传感器阵列输出信号的处理判断方式进行验证,对实验结果的分析表明本研究制造的微型热敏传感器阵列能够实现对流体边界层分离位置的在线测量.  相似文献   

18.
本文在评述航空风洞中各种人工加速形成边界层方法曲基础上,提出一种适用于NH-2模型风洞形成大气边界层的模拟装置及其试验结果。试验结果与有关资料比较是相符的。故此模拟装置可推广应用到NH-2航空风洞中的风力工程试验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号