首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Heat-ray absorbing film is used to be bonded on the existing sheet glasses of the windows. It is effective for air-conditioning energy saving against the global warming, because it absorbs heat-ray in the thin film and de- creases the incoming heat-ray into the room. On the other hand, the sheet glasses increase the temperature at the surface which the sheet is bonded and sometimes yield heat cracks by thermal stresses. It is important to know the state of thermal stresses accurately in order to develop the heat-ray absorbing film with higher performance and without heat cracks. In this paper, the analysis model is treated as the two-layer plate of the conventional soda sheet glass and the heat-ray absorbing film with different absorptivities. The unsteady temperature and thermal stresses are analyzed and calculated numerically. The influence of the patch side, which the heat-ray absorbing film is bonded at the exterior side or the interior side, on the heat-ray absorbing performance and the thermal stresses is discussed. It is found that the alternative patch side has no effect on the heat-ray absorbing performance and that the patch side is recommended to be interior side from a view point of decreasing thermal stresses against the heat crack of glasses.  相似文献   

2.
The semi-permeable boundary condition is proposed to discuss the influence of the thermal conductivity acting on the stress and heat flow around the hole. Based on the Stroh formalism, the closed form solutions are de- rived, the stress and heat flow around the hole are discussed. The results show that the thermal boundary condi- tion has significant influence on the hoop stress and heat flow around the hole. The hoop stress decreases dramatic- ally with the increasement of the thermal conduction coefficient.  相似文献   

3.
In a linear framework, the problem of stability of closed cylindrical shell is briefly discussed. The cylin- drical shell is immersed in a supersonic gas flow and under the influence of temperature field varying along the thickness. An unperturbed uniform velocity flow field, directed along the short edges of the shell, is applied. Due to the inhomogeneity of the temperature field distribution across the thickness shell buckling instability occurs. This instability accounts for the deformed shape of the shell, to be referred as the unperturbed state. Stability con- ditions and boundary for the unperturbed state of the system under consideration are presented following the basic theory of aero-thermo-elasticity. The stability boundary depends on the variables characterizing the flow speed, the temperature at the middIe plane of the shell and the temperature gradient in the direction normal to that plane. It is shown that the combined effect of the temperature field and flowing stream regulates the process of stability, and the temperature field can significantly change the flutter critical speed.  相似文献   

4.
The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the discontinuity,the wave reflection and transmission coefficients are calculated.Wave control is applied somewhere upstream or downstream to two-beam structures.Vibrations of two coupled beams per unit disturbance are investigated.The results show that wave control is efficient,and the influence of the thickness ratio of two-beam structures on control location is discussed.  相似文献   

5.
In high-speed machining,hardened steel materials are subjected to high temperatures and high strain rates.Under these conditions,the composition and microstructure of the material may change,and phenomena,such as thermal softening,emerge.These effects are difficult to detect by only observing the chip morphology.Here,using a microscopic detection method,the dynamic mechanical behavior and microstructure of SDK11 hardened steel(62HRC)is investigated at high temperature and high strain-rate,and the relationship between strain hardening,thermal softening,and strain-rate strengthening is determined.The metallographic phases of specimens treated using a split-Hopkinson pressure bar,and″chips″generated during high-speed machining at high temperature and high strain rate state are compared.The results indicate that the phase composition at low temperature and low strain rate differs from that at high temperature and high strain rate.It is further concluded that shear slip occurs at high temperature and high strain rate,and the shear behavior is more pronounced at higher strain rates.  相似文献   

6.
For the enhancement of heat transfer efficiency,a novel turbulator inspired by the morphology of barchan dunes,called the mimetic barchan dune(MBD)turbulator,is designed and evaluated in the simplified gas turbine transition section. By using computational fluid dynamics(CFD),the numerical simulations for comparison have been carried out,concluding the smooth thermal surface,a thermal surface with riblet-shaped turbulator and a thermal surface with MBD turbulator. Then,two indicators are investigated for evaluating the coolant performance which are the heat transfer efficiency(η)on the outlet and the pressure loss(ΔP)in the coolant chamber. The numerical results show that the coolant has the best heat transfer efficiency with less pressure loss in the coolant chamber with the MBD turbulator. Then,the effect of the MBD turbulator sizes on heat transfer efficiency is investigated. When the height of the MBD turbulator(h)is set at 8 mm,the maximum amount of heat that could be transfered by the coolant is up to566.2 K and the corresponding heat transfer efficiency is 26.62%. The detail flows have been shown to elucidate the function of the MBD surface which may greatly arouse more design for solving harsh circumstance.  相似文献   

7.
Numerous non-destructive techniques are being investigated for assuring quality of the adhesive bonds.The research presented here is focused on non-destructive assessment of carbon fibre reinforced polymer(CFRP)parts.The surface condition directly influences the performance of adhesive bonds.The structural joints should ensure safe usage of a structure.However,some modifications of the surface may lead to weak bond that cannot carry the desired load.This is why there is a search for methods of surface assessment before bonding.Moreover,reliable techniques are required to allow to verify the integrity of the adhesive bond after manufacturing or bonded repair.We focus on the laser induced fluorescence(LIF)method for assessing the surface state.The LIF is a noncontact measurement method.In the context of adhesive bond assessment the electromechanical impedance(EMI)method is studied.The EMI uses surface bonded piezoelectric sensors for excitation and sensing.The investigated samples were made of CFRP layers.The samples were treated at elevated temperatures.The influence of the thermal treatment was studied using LIF.The thermal treatment at 220℃could be clearly distinguishedrom the rest of the considered samples.The thermally treated plates were bonded to untreated plate and then they were measured with the EMI method to study the influence of the treatment on the adhesive bond.The changes of EMI spectra were significant for the treatment at 280 ℃ and for some thermally treated samples that were later contaminated with de-icing fluid.  相似文献   

8.
The theoretical solutions are obtained for the three-dimensional(3-D)stress field in an infinite isotropic elastic plate with a through-the-thickness circular hole subjected to shear load at far field by using Kane and Mindlin′s assumption based on the stress function method.Based on the present solutions,the characteristics of 3-D stress field are analyzed and the emphasis is placed on the effects of the plate thickness and Poisson′s ratio on the deviation of the present 3-D in-plane stress from the related plane stress solutions,the stress concentration and the out-of-plane constraint.The present solutions show that the stress concentration factor reaches its peak value of about 8.9% which is higher than that of the plane stress solutions.As expected,the out-of-plane stress constraint factor can reach 1on the surface of the hole when the plate is a very thick one.  相似文献   

9.
The flow boiling heat transfer characteristics of refrigerant R134 a flowing inside two different kinds of minichannels are investigated. One channel is multi-port extruded with the hydraulic diameter of 0.63 mm,and the other one is rectangular with offset fins and a hydraulic diameter of 1.28 mm. The experiments are performed with a mass flow rate between 68 and 630 kg/(m~2·s),a heat flux between 9 and 64 kW/m~2,and a saturation pressure between 0.24 and 0.63 MPa,under the constant heat flux heating mode. It is found that the effect of mass flow rate on boiling heat transfer is related to heat flux,and that with the increase of heat flux,the effect can only be efficient in higher vapor quality region. The effects of heat flux and saturation pressure on boiling heat transfer are related to a threshold vapor quality,and the value will gradually decrease with the increase of heat flux or saturation pressure. Based on these analyses,a new correlation is proposed to predict the boiling heat transfer coefficient of refrigerant R134 a in the mini-channels under the experimental conditions.  相似文献   

10.
A robust repetitive control scheme is used to improve the rate smoothness of a brushless DC motor (BLDCM) driven test turntable. The method synthesizes variable structure control (VSC) laws and repetitive control (RC) laws in a complementary manner. The VSC strategy can stabilize the system and suppress uncertainties, such as the aperiodic disturbance and noises, while RC strategy can eliminate the periodic rate fluctuation in a steady state. The convergence of the repetitive learning process is also guaranteed by VSC. A general nonlinear system model is discussed. The model can be considered as an extension of BLDCMs. The stability and asymptotic position tracking performance are validated by using Lyapunov functions. Simulation results show the effectiveness of the proposed approach for improving the rate smoothness.  相似文献   

11.
In order to maximize the utilization of the observation information in the cooperative localization, a com- pensation algorithm based on the estimation state is presented for transmission delay. Under the framework of the Kalman filter, two different processes of state estimating with and without transmission delay are investigated and contrasted. The expression of difference quantity caused by transmission delay is derived. It is used to compensate the present estimation state instead of the observed information compensation. According to the characteristics of state transition matrix, an equivalent expression of which successively impacts on the covariance factor in delay time is obtained. The simulation results show that the present estimated state is effectively corrected by transmis- sion information and the relevance among agents is accurately updated. As a result, a higher positioning accuracy is achieved. Meanwhile, the consumption of recording and multiplication of the state transition matrix is saved.  相似文献   

12.
Panel flutter phenomena can be strongly affected by thermal loads,and so a refined aeroelastic model is presented.Higher-order shell theories are used as structural models.The aerodynamic forces are described using the Piston theory.The temperature is considered uniform over the thickness of the panel.The aero-thermo-elastic model is derived in the framework of the Carrera unified formulation(CUF),therefore the matrices are expressed in a compact form using the″fundamental nuclei″.Composite and sandwich structures are considered and different boundary conditions are taken into account.The effects of the thermal load on the aeroelastic behavior are investigated.  相似文献   

13.
Double perovskite oxide Sr_2FeMoO_6 powder is prepared by a solid state reaction method.The microwave absorption properties of Sr_2FeMoO_6 and paraffin wax composites are studied in the frequency range of 2—18GHz at room temperature.The optimum absorption-36.7dB is achieved at 17.7GHz with a matching thickness of 5.0mm,which indicates that Sr_2FeMoO_6/paraffin composites can be potential microwave absorbers in a relatively high frequency range.The excellent microwave absorption properties are attributed to the good electromagnetic match between dielectric loss and magnetic loss.The dielectric loss is considered to be caused by orientation polarization and interfacial polarization,while the magnetic loss is caused by natural resonance in the low frequency range,eddy current loss as well as exchange resonance in the high frequency range.  相似文献   

14.
The thermoelastic plane problems of two-dimensional decagonal quasicrystals(QCs)are systematically investigated.By introducing a displacement function,the problem of thermoelastic plane problems can be simplified to an eighth-order partial differential governing equation,and then general solutions are presented through an operator method.By virtue of the Almansi′s theorem,the general solutions are further established,and all expressions for the phonon,phason and thermal fields are described in terms of the potential functions.As an application of the general solution,for a steady point heat source in a semi-infinite quasicrystal plane,the closed form solutions are presented by four newly induced harmonic functions.  相似文献   

15.
An investigation on damage location due to the corrosion in reinforced concrete structures is conducted. The frequency change square ratio is used as a parameter for the damage. It is theoretically verified that the parameter is a function of the damage location. Experimental results of the corrosion in reinforced concrete structures show that the predicted damage location is in agreement with the real damage location. The modal parameters are used to detect the damages in structural concrete elements, and so they are useful for structural appraisal.  相似文献   

16.
The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numer- ical integration of an orbit on the unstable manifold of a periodic solution. This algorithm is matrix-free and em- ploys a combination of the Newton-Raphson method and the Krylov subspace method. Moreover, the algorithm adopts a multiple shooting method to address the problem of orbital instability due to long-term numerical integra- tion. The algorithm is described through computing the extension of unstable manifold of a recomputed Nagata~s lower-branch steady solution of plane Couette flow, which is an example of an exact coherent state that has recently been studied in subcritical transition to turbulence.  相似文献   

17.
A new calculating method of aerodynamic heating for unsteady hypersonic aircrafts with complex config- uration is presented. This method, which considers the effects of high temperature chemical non-equilibrium and the heat transfer process in thermal protection structure, is based on the combination of the inviscid outerflow solu- tion and the engineering method, where the Euler solver provides the flow parameters on boundary layer edge for engineering method in aerodynamic heating calculation. A high efficient interpolation technique, which can be ap- plied to the fast computation of longtime aerodynamic heating for hypersonic aircraft, is developed for flying trajec- tory. In this paper, three hypersonic test cases are calculated, and the heat flux and temperature distribution of thermo-protection system are shown. The numerical results show the high efficiency of the developed method and the validation of thermal characteristics analysis on hypersonic aerodynamic heating.  相似文献   

18.
INTRODUCTIONMultiphase and multifluid flows are commonin many natural and technologically importantprocesses. Rain,spray combustion,spray paint-ing,and boiling heat transfer are just a few ex-amples.While it is the overall,integral charac-teristics of such flows that are of most interest,the global behavior is determined to a large de-gree by the evolution of the smallestscales in theflow.The combustion of sprays,for example,depends on the size and the number density ofthe drops.Generally…  相似文献   

19.
An improved three-dimensional incompressible smooth particle hydrodynamics (ISPH) model is developed to simulate the impact of regular wave on a horizontal plate. The improvement is the employment of a corrective function to enhance angular momentum conservation in a particle-based calculation. And a new estimation method is proposed to predict the pressure on the horizontal plate. Then, the model simulates the variation characteristics of impact pressures generated by regular wave slamming. The main features of velocity field and pressure field near the plate are presented. The present numerical model can be used to study wave impact load on the horizontal plate.  相似文献   

20.
For the research of helicopter/ship dynamic interface,the method of combining steady flow and stochastic flow is adopted to establish a flow field model applied to the flight dynamics analysis of shipborne helicopter.The steady flow is calculated by computational fluid dynamics(CFD)method,while the stochastic flow is composed of the compensation velocity derived from ship motion and turbulence above the deck.The accuracy of the proposed flow field model is verified by comparing the helicopter response in the proposed flow field with the results calculated by US Army′s Military Specifications(MIL)model which is commonly used in engineering.Meanwhile,it also shows the proposed flow field model is more appliable to flight dynamics analysis of shipborne helicopter.On that the basis,ship deck flow field is simulated at different sea conditions by adjusting the wind speed on the deck,mother ship movement and shipboard turbulence,etc.And helicopter angular rate response is calculated.The results show that the difference of dynamic stability between helicopter′s roll and pitch leads to the facts that the influence of above factors on the helicopter′s roll angular rate response is greater than that of pitch angular rate,that the frequency and amplitude of mother ship roll motion are much greater than those of pitch motion,and that the disturbance caused by roll motion on the air has greater influence on the helicopter response.The shipboard turbulence is the main disturbance factor that influences helicopter flight stability and its intensity determines the amplitudes of angular rate response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号