首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To estimate the protective properties of a space suit against cosmic radiation the dose rates were calculated for extravehicular activity in the ISS orbit for a number of representative points of critical organs of the human body. The screening functions of the Orlan-M space suit obtained by the authors earlier are used in the calculations. In addition, the effect of East-West asymmetry of the fluxes of high-energy protons trapped by the geomagnetic field is taken into account. It is shown that during passages through the South Atlantic Anomaly, choosing the optimal orientation of astronauts in relation to the cardinal directions, one can achieve for the most critical body organs a dose rate reduction by a factor of ∼1.5–1.8 (in the maximum of solar activity) and by a factor of ∼2–2.5 (in the solar activity minimum). The obtained results can serve for obtaining more accurate estimation of radiation risk for astronauts working in the Orlan-M space suit in the near-terrestrial orbits and for elaborating practical recommendations to reduce their radiation exposures.  相似文献   

2.
3.
构建载人航天器模型,利用Geant4软件计算了银河宇宙射线中的质子穿过载人航天器后在水模体中的总吸收剂量以及次级粒子吸收剂量,并且统计了不同种类的次级粒子在水模体中的总数量分布。计算结果表明,次级粒子引起的辐射剂量所占比例为50%,且二次电子总数量达到了10~7量级。  相似文献   

4.
5.
《Acta Astronautica》2007,60(4-7):547-553
The dose values in body's critical organs are necessary for estimating the effective dose. The tissue-equivalent phantom is used for such assessment as a rule. The spherical phantom is best fit for this goal. Therefore, the method developed on the basis of such phantom application becomes a good mean of effective dose estimating onboard the International Space Station. The main problems connected with developing a method of assessing an effective dose in the human's body organs with usage of a spherical phantom are presented in the paper. Proposed method can be used for monitoring the daily effective dose of crewmembers exposure for undisturbed radiation conditions of the flight.  相似文献   

6.
We present the characteristics of short (duration less than 1 min) increases of the counting rate of electrons with energies >0.08 MeV observed in low-latitude (L < 2.0) regions of near-Earth space in the course of the GRIF experiment on the Spektr module of the Mir orbital station. The measurements were carried out using a set of instruments including X-ray and gamma-ray spectrometers, as well as detectors of electrons, protons, and nuclei with large and small geometrical factors, which allowed one to detect the fluxes of charged particles both in the region of the Earth’s radiation belts and in regions close to the geomagnetic equator. As a result of more than 1.5 years of observation, it is demonstrated that short increases in the intensity of electrons of subrelativistic energies are detected not only in the regions of the near-Earth space known as “precipitation zones” (1.7 < L < 2.5), but in high-latitude regions (up to the geomagnetic equator, L < 1.1) as well. Two types of increases of the electron counting rate are found: either fairly regular increases repeating on successive orbits or increases local in time. The latter type of increases can be caused by a short enhancement of electron flux on a given drift shell. The results of our measurements have shown that the duration of the detected increases in intensity can be rather short, as little as 20–30 s. Therefore, in the case of large amplitudes, such increases of the counting rate of electrons can imitate astrophysical events of the type of cosmic gamma-ray bursts in the detectors of hard X-ray and gamma radiation.  相似文献   

7.
Accurate estimations of the health risks to astronauts due to space radiation exposure are necessary for future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic rays (GCR), which include high-energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, ?. The risk of radiation exposure to astronauts as well as to hardware from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection. To support the probabilistic risk assessment for EVAs, which could be up to 15% of crew time2 on lunar missions, we estimated the probability of SPE occurrence as a function of solar cycle phase using a non-homogeneous Poisson model [1] to fit the historical database of measurements of protons with energy>30 MeV, Φ30. The resultant organ doses and dose equivalents, as well as effective whole body doses, for acute and cancer risk estimations are analyzed for a conceptual habitat module and for a lunar rover during space missions of defined durations. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning for future manned space exploration missions.  相似文献   

8.
The influence of spatial orientation of the International Space Station (ISS) on the dose rate recorded during passages of the station through the South-Atlantic anomaly (SAA) zone is considered. The dose rates detected by dosimeters of the radiation control system of the ISS are compared with results of calculation-based estimates. It is shown that when crossing the SAA region in close trajectories, but with different spatial orientation of the station, the dose rate near cabins of the ISS Service Module can differ by more than a factor of two.  相似文献   

9.
Kuznetsov  N. V.  Nymmik  R. A.  Panasyuk  M. I.  Sosnovets  E. N.  Teltsov  M. V. 《Cosmic Research》2004,42(3):203-209
We consider cases of simultaneous detection of the absorbed doses produced by proton fluxes of powerful solar events onboard the Mir and ISS orbital stations and the Ekspress A3 geosynchronous satellite. Experimental data are analyzed using a software package that takes into account the energy spectra of protons at the Earth's orbit depending on the time of event evolution, as well as their penetration to near-earth orbits and through the protective shields of spacecraft. Based on a comparison of the experimental data of dosimeters with the calculation of absorbed doses under the action of solar proton events, we developed a method of estimating the effective thickness of the shielding of dosimeters and made some estimates. A possibility is considered for predicting the radiation hazard onboard orbital stations upon the appearance of solar proton events using dosimeter data from a geosynchronous orbit.  相似文献   

10.
For a reliable prediction of dose loads on a crew and its habitation environment, which, so far, cannot be calculated with sufficient accuracy, an experimental study of the dynamics of radiation situation characteristics in the modules of the manned International Space Station (ISS) is carried out. The results of prompt monitoring and individual dose control of the crews of seven basic missions in the period of flight from August 1, 2000, to October 28, 2003, are presented. This period of time coincided with the maximum phase of solar activity. On the basis of comparing the measurement data, it was shown that the value of an accumulated individual absorbed dose did not exceed the limits of readings of a two-channel standard R-16 radiometer. The power of the radiation dose absorbed by crew members lies within the range 0.017–0.02 cGy/day and mainly depends on the solar activity level.  相似文献   

11.
A comparison of the measurement data of radiation conditions onboard the ISS during solar proton events in October 2003 and onboard the Mir orbital station in October 1989 is carried out. It is shown that there is a difference in the conditions of particle penetration to the station orbits during these series of flares. Computational estimates of the absorbed doses are obtained, and they agree well with the data of measurements by standard instruments of radiation monitoring. The comparisons made demonstrate that the equivalent thickness of the shield at the location of the R-16 radiometer onboard the ISS exceeds the corresponding value onboard the Mir station by a factor of 2.8.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 663–667.Original Russian Text Copyright © 2004 by Bondarenko, Mitrikas, Tsetlin.  相似文献   

12.
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens.  相似文献   

13.
To construct models for hazard prediction from radiation belt particles to satellite electronics, one should know temporal behavior of the particle fluxes. We analyzed 11-year variation in relativistic electron flux (E>2 MeV) at geosynchronous orbit using measurements made by GOES satellites during the 23rd sunspot cycle. As it is believed that electron flux enhancements are connected with the high-speed solar wind streams and ULF or/and VLF activity in the magnetosphere, we studied also solar cycle changes in rank order cross-correlation of the outer radiation belt electron flux with the solar wind speed and both interplanetary and on-ground wave intensity. Data from magnetometers and plasma sensors onboard the spacecraft ACE and WIND, as well as magnetic measurements at two mid-latitude diametrically opposite INTERMAGNET observatories were used. Results obtained show that average value of relativistic electron flux at the decay and minimum phases of solar activity is one order higher than the flux during maximum sunspot activity. Of all solar wind parameters, only solar wind speed variation has significant correlation with changes in relativistic electron flux, taking the lead over the latter by 2 days. Variations in ULF amplitude advance changes in electron flux by 3 days. Results of the above study may be of interest for model makers developing forecast algorithms.  相似文献   

14.
The problem of estimating the risk of radiation for humans on the Moon is discussed, taking into account the probabilistic nature of occurrence of solar particle events. Calculations of the expected values of tissue-averaged equivalent dose rates, which are created by galactic and solar cosmic-ray particle fluxes on the lunar surface behind shielding, are made for different durations of lunar missions.  相似文献   

15.
文章叙述了空间环境与卫星长寿命高可靠的关系,着重分析了影响GEO卫星长寿命高可靠的各种空间环境效应,如:地磁亚暴电子造成的卫星表面带电及诱导的二次放电、辐射带高能电子引起卫星内带电、太阳耀斑质子和银河宇宙射线造成的单粒子效应、空间带电粒子和太阳电磁辐照造成的辐照总剂量效应以及空间环境下敏感表面的污染效应等.文章最后给出GEO卫星空间环境效应的评估、验证和保障技术研究的必要性及其主要研究方向.  相似文献   

16.
Developing successful and optimal solutions to mitigating the hazards of severe space radiation in deep space long duration missions is critical for the success of deep-space explorations. Space crews traveling aboard interplanetary spacecraft will be exposed to a constant flux of galactic cosmic rays (GCR), as well as intense fluxes of charged particles during solar particle events (SPEs). A recent report (Tripathi et al., Adv. Space Res. 42 (2008) 1043–1049), had explored the feasibility of using electrostatic shielding in concert with the state-of-the-art materials shielding technologies. Here we continue to extend the electrostatic shielding strategy and quantitatively examine a different configuration based on multiple toroidal rings. Our results show that SPE radiation can almost be eliminated by these electrostatic configurations. Also, penetration probabilities for novel structures such as toroidal rings are shown to be substantially reduced as compared to the simpler all-sphere geometries. More interestingly, the dimensions and aspect ratio of the toroidal rings could be altered and optimized to achieve an even higher degree of radiation protection.  相似文献   

17.
In connection with projects of manned bases on the Moon it becomes topical to estimate radiation danger for their inhabitants. In this paper we describe a method of evaluation of the radiation environment on the lunar surface produced by galactic and solar cosmic rays. The roles of both primary and secondary radiations generated in the depth of the lunar soil under the action of high-energy protons and nuclei are taken into account. Calculated fluxes of particles are used in order to estimate annual averaged absorbed and equivalent local dose rates in tissues. It is established that in the lunar rock the contribution of secondary neutrons to the dose rate exceeds that of protons. The contribution of the secondary particles generated by nuclei of galactic cosmic rays to the dose rate is estimated.  相似文献   

18.
Low fluxes of protons with energies 0.3–10 MeV were studied during 21–23 solar cycles as a function of the MgII index using the data of the instruments CPME, EIS (IMP8), and EPHIN (SOHO). It has been shown that a) during quiet time of solar activity the fluxes of protons (background protons) have a positive correlation with the MgII index value throughout the solar cycle, b) specific features of variations of the MgII index during the solar minima of 1986–1987 and 1996–1997 can be considered, as well as variations of background fluxes of low energy charged particles, to be manifestations of the 22-year magnetic cycle of the Sun, and c) periods of the lowest value of the MgII index are also characterized by the smaller values of the ratio of intensities of protons and helium nuclei than in other quiet periods. A hypothesis is put forward that acceleration in a multitude of weak solar flares is one of the sources of background fluxes of low energy particles in the interplanetary space.  相似文献   

19.
This paper presents the doses levels expected in orbits in chart form, covering the range 300-800 km of altitude and 0-90 degrees of inclination behind shieldings similar to the Hermes spacecraft and the EVA spacesuit matter distributions. These charts allow users to rapidly find the radiobiological dose received in the most critical organs of the human body either in normal situations or during a large solar event. Outside the magnetosphere, during interplanetary or lunar missions, when the dose received during crossing of the radiation belts become negligible, the dose is due to galactic cosmic rays (GCR) and solar flares. The correct radiobiological assessment of the components of this radiation field becomes a major problem. On the Moon a permanent ground-based station can be shielded by lunar materials against meteoroids and radiations. The radiobiological hazard, essentially linked to the solar flare risk during the transfer phase and the extra-station activities, may be solved by mission planning. For interplanetary flights the problem comes from both increased risk of solar events and from the continuous exposure to GCR. These energetic particles cannot be easily stopped by shieldings; cost considerations imply that more effective materials must be used. Impact on the vehicle design and the mission planning is important.  相似文献   

20.
The magnetosphere and ionosphere response to arrival of large changes of the solar wind dynamic pressure with sharp fronts to the Earth is considered. It is shown that, under an effect of an impulse of solar wind pressure, the magnetic field at a geosynchronous orbit changes: it grows with increasing solar wind pressure and decreases, when the solar wind pressure drops. Energetic particle fluxes also change: on the dayside of the magnetosphere the fluxes grow with arrival of an impulse of solar wind dynamic pressure, and on the nightside the response of energetic particle fluxes depends on the interplanetary magnetic field (IMF) direction. Under the condition of negative Bz-component of the IMF on the nightside of the magnetosphere, injections of energetic electron fluxes can be observed. It is shown, that large and fast increase of solar wind pressure, accompanied by a weakly negative Bz-component of the IMF, can result in particless’ precipitation on the dayside of the auroral oval, and in the development of a pseudobreakup or substorm on the nightside of the oval. The auroral oval dynamics shows that after passage of an impulse of solar wind dynamic pressure the auroral activity weakens. In other words, the impulse of solar wind pressure in the presence of weakly negative IMF can not only cause the pseudobreakup/substorm development, but control this development as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号