首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对星间激光通信机后光路各光学元件存在的安装误差导致的光轴指向偏差,细化了激光通信机光学系统中各元件的误差矩阵,并采用矩阵光学方法提高分析精度,通过蒙特卡洛法模拟了总体误差情况,定量分析了各光学元件安装误差对光轴指向精度的影响。为了校正存在的固定安装误差,提出了基于误差校正矩阵的补偿方案。在不测量元件具体误差的情况下,通过相机处光斑质心坐标,反推入射光矢量方向,计算得到误差校正矩阵,对跟踪机构的转动角度进行补偿,显著降低了安装误差对光轴指向精度的影响,并在实机进行了粗跟踪误差校正矩阵修正安装误差的实验验证和全角度推广。结果表明,误差校正矩阵可以在难以测量后光路内部各光学元件误差的情况下,补偿系统安装误差,实现对后光路光轴指向误差的校正,大大简化了地面误差修正的流程,同时节约了在轨通信机跟踪指向运算资源,提高跟踪响应频率。  相似文献   

2.
文章针对星载天线大尺寸、大柔性,引起卫星姿轨控时卫星本体姿态运动与柔性天线自身弹性变形相互耦合,进而导致天线指向精度下降的问题,提出了一种计算卫星姿轨控制引起的大型柔性天线在轨波束指向偏差的计算方法。首先,结合有限元法和混合坐标法,通过理论推导,建立了卫星与大型柔性索网天线刚柔耦合动力学模型;然后,以某在轨成像卫星东西位保为例,通过有限元法对该柔性索网天线进行模态分析,得到描述天线弹性振动的模态矩阵与质量矩阵,结合天线的模态矩阵、质量矩阵及天线与卫星本体的坐标转换关系,得到天线振动相对于星本体坐标系的平动耦合系数与转动耦合系数,再与星本体的刚体运动参数组合起来,求解卫星天线刚柔耦合动力学模型,即可得到天线实际振动位移。最后,根据天线实际振动位移进行天线型面拟合,并选取其最差型面进行了天线电波束指向仿真。仿真结果表明,天线方位向的波束指向偏差最大为0.0576°,可为天线在轨指向设计提供依据。该算法同样适用于卫星其他姿轨控制工况。  相似文献   

3.
航天器总装精度测量中一种不规则棱镜矢量计算方法   总被引:2,自引:2,他引:0  
航天器总装精度测量一般是通过被测设备上安装的立方镜实现的。某型号上的一种设备受其在航天器上安装位置的限制,使用经纬仪和现有精度测量软件无法直接测得立方镜三个相互垂直平面法线在航天器坐标系下的角度。文章提出使用切角为135°不规则棱镜替代立方镜,并详细介绍了切角为135°不规则棱镜三个相互垂直平面法线在航天器坐标系下矢量的计算方法。该方法已经过验证和认可,并应用到后续型号的精度测量工作中。  相似文献   

4.
用户星姿态对中继终端天线跟踪的影响   总被引:1,自引:1,他引:0  
用户星姿态对中继终端天线跟踪的影响主要在两个方面:姿态角误差对指向误差的影响和姿态角、姿态角速度对指向角速度的影响。文章首先引入了欧拉轴/角的姿态表示方法,然后根据欧拉轴与指向向量间的位置关系求得了姿态角误差所引起的天线理论最大指向误差,在此基础上,不考虑最大值取值条件的情况下,进一步求得姿态角速度所引起的天线理论最大指向角速度;接着,以常用中继终端天线的安装位置为例,求出了天线指向角速度与用户星姿态角、姿态角速度的数学表达式,这样便于分析各种情况下用户星姿态对天线指向角速度的影响;最后,借助于STK仿真软件进行了仿真验证,[JP2]仿真结果验证了上述结论的正确性。结论表明:天线理论最大指向误差除了与姿态角误差有关外,还受滚动姿态角的影响;天线指向角速度同时由姿态角、姿态角速度和天线指向角度确定。[JP]  相似文献   

5.
针对窄波束高增益相控阵天线波束指向精度要求高、安装误差对波束指向的影响无法忽略的问题,提出了一种基于光学瞄准的安装误差测量方法,给出了光学测量内容和误差修正矩阵,经某型无人机飞行测试表明,该方法可以减少由安装误差带来的波束指向偏差,对高精度波束指向具有重要意义。  相似文献   

6.
单轴速率三轴位置惯性测试转台误差及传递分析   总被引:7,自引:0,他引:7  
白雪峰  赵剡 《航天控制》2006,24(2):26-29
阐述了单轴速率三轴位置惯性测试转台系统误差的种类,诸如安装面与轴线平行度、位置精度和回转精度等,主要来源于安装工艺、控制系统精度、测角系统精度以及机械磨损等因素,不可避免地存在于转台系统中。由此产生了综合性的指向误差并对测试数据造成影响,文章根据飞行仿真转台的指向误差公式推导出了适合本实验用惯性测试转台的误差计算公式。依据实际的测试流程计算出各轴的指向误差,得出标度因数、阈值、分辨率等参数测试时,指向误差使得被测参数偏小;而对于交叉耦合参数,造成被测参数偏大,在对高精度陀螺组合测试时应予以估计和补偿。  相似文献   

7.
提出一种改进的激光星间链路终端(LCT)指向误差在轨标定方法,对激光星间链路终端指向误差模型和观测数据获取方法进行改进。针对现有的终端指向误差参数模型误差因素考虑不足的问题,引入相应的误差项描述误差因素影响。针对链路观测法中存在的激励信号受限,不能充分激励误差参数的问题,以捕获过程中指向机构主动摆动时的入射光信号作为激励信号,以系统误差参数的可观测度最大为目标优化设计激励信号。仿真结果表明:经过本方法标定的误差参数经修正后, 激光星间链路终端的最大指向误差(方位向)由改进前的867.8 μrad下降到改进后的112.1 μrad;最大指向误差(俯仰向)由改进前的62.1 μrad下降到改进后的51.5 μrad,有效地提高了激光星间链路终端指向精度。  相似文献   

8.
立方星伞状天线由金属丝网、双折辐射肋、中心轮毂等结构组成,其辐射肋的间隙误差影响展开过程与展开后的位置精度。针对0.5m口径Ka频段立方星伞状天线辐射肋间隙误差对展开过程的影响,基于有效杆长理论,建立了铰链间隙误差对辐射肋运动过程影响的数学模型,分析了双折辐射肋在展开过程中运动性能的数字特征,得到在4种常见的轴孔配合铰链约束情况下,根肋顶点的位置误差小于0.08mm,天线尖肋顶点的位置误差小于0.14mm,可以为天线根肋、尖肋铰链间隙误差的选择提供理论依据。  相似文献   

9.
针对激光星间链路终端指向误差在轨标定中航天器姿态测量误差影响标定结果的问题,本文提出了基于多链路测量的航天器姿态测量误差分离方法。该方法利用了导航星座中同一航天器同时建立多条链路的特点,获取不同方向的LCT指向误差测量数据。通过同时估计航天器姿态测量误差与LCT自身指向误差参数,实现了航天器姿态测量误差与LCT自身指向误差的分离。仿真结果表明:航天器姿态测量误差对LCT指向误差标定结果有显著影响,利用本方法进行误差分离后,LCT指向误差标定结果最大偏差由分离前的64.9 μrad下降到误差分离(6条链路)后的21.1 μrad,有效降低了航天器姿态测量误差对LCT指向误差标定结果的影响。该方法的有效性取决于链路条数和链路拓扑构型。  相似文献   

10.
针对中继卫星在轨自动跟踪精度测试基准值建立和有效数据获取的难题,根据在天线电轴跟踪零点附近角误差电压灵敏度正比于波束指向角误差灵敏度的特性,提出了采用角误差电压灵敏度作为基准值,天线稳定跟踪目标时的方位角误差电压和俯仰角误差电压作为测试数据,通过数据处理得出在轨自动跟踪误差,然后与差波束零点(天线电轴)与和波束接收信号最大值轴之差相加,得出在轨自动跟踪精度的测试方法。并制定测试方案和测试流程,在轨进行了实施。与地面测试结果进行比较,数据相近,验证了测试方法的可行性和有效性。采用该方法测试难度小,便于实施,测试结果不受天线安装误差、卫星姿态变化等因素的影响,解决了中继卫星在轨自动跟踪精度测试的难题。  相似文献   

11.
对流层延迟修正误差是深空干涉测量的重要误差源之一。通过修正对流层经典天顶延迟模型和Niell映射函数NMF(Niell Mapping Function)构建了一种高精度区域对流层延迟模型。首先,结合我国深空网喀什深空站对流层延迟实测数据,对Saastamoinen模型的适用性进行分析,通过线性最小二乘拟合修正天顶干延迟参数,模型精度相对改善29.6%;然后,针对NMF低仰角情况下映射偏差较大的问题,构建偏差函数模型,显著改善了低仰角下的映射性能,经实测数据验证:仰角在0°~30°时,对流层延迟模型偏差相对改善约30%。改进后的对流层区域模型估计精度高,可为我国深空干涉测量对流层延迟修正提供参考。  相似文献   

12.
陈汀  陈国忠  陈筠力 《上海航天》2023,40(4):146-151
星载平面相控阵天线的相位中心是影响卫星成像质量的一个重要参数,针对平面相控阵天线的相位中心在卫星上的位姿标定问题,本文提出了一种标定平面相控阵天线相位中心位姿的方法。首先,建立了平面相控阵天线相位中心相对卫星主基准位姿传递的数学模型;其次,采用暗室测量系统对平面相控阵天线相位中心进行了标定,测得天线本体坐标系下的天线相位中心位置;最后,利用激光跟踪仪和经纬仪精测系统测出了天线相对卫星基准的位姿矩阵。基于本文提出的数学模型,获取了平面相控阵天线相位中心在卫星基准坐标系下的位置与姿态数据;同时,通过试验验证了平面相控阵天线紧固件的拧紧力矩,其对平面相控阵天线相位中心的影响可忽略。该方法对后续确定搭载平面相控阵天线的卫星相位中心工程验证,提供了参考。  相似文献   

13.
卫星光通信终端二维转台运动参量对天线指向影响研究   总被引:1,自引:0,他引:1  
二维转台与卫星平台间的耦合运动,是影响卫星光通信终端天线指向控制的重要因素。在耦合动力学模型基础上,研究了二维转台不同运动参量对光通信终端天线指向偏差的影响。分析结果表明:在耦合动力学环境下,光束指向偏差随二维转台转动成规律性变化;当方位轴、俯仰轴转角θh、θv分别为(π,0)、(-π,0)时,指向偏差出现最大值;随二维转台转动时间的增加,天线指向偏差略有增加,转动时间由10s增加到1000s时增幅仅为1%。其结果为补偿耦合运动影响,保证天线指向控制精度,提高卫星光通信终端星上应用的稳定性打下基础。  相似文献   

14.
崔慧敏 《遥测遥控》2022,43(5):61-67
针对光电平台低速转动时,受摩擦力影响较大,使得速度跟随曲线出现“死区”现象,导致跟踪性能明显下降这一问题,提出了一种基于智能差分进化算法和Lurge摩擦模型的摩擦力补偿控制方法。通过采集记录光电转台正、反向匀速运动时的摩擦力大小,建立转台不同速度和摩擦力之间的对应关系。通过最小二乘法对摩擦模型静态参数进行分段拟合,采用智能差分进化算法辨识摩擦模型动态参数,并基于反馈的速度信息和获得的摩擦模型等效为摩擦补偿力矩输入到电流环控制输入端,实现平台平稳低速运行。实验结果表明:摩擦力补偿后速度响应误差由补偿前的±0.1°/s减小到±0.04 °/s,提出方法效果显著。  相似文献   

15.
非合作大目标位姿测量的线结构光视觉方法   总被引:2,自引:0,他引:2  
高学海  梁斌  潘乐  徐文福 《宇航学报》2012,33(6):728-735
空间机器人与非合作大目标交会接近最终段,单目相机不能获取完整的特征图像而无法完成相对位姿测量。针对此问题,提出基于线结构光和单目视觉的相对位姿测量方法。以非合作大目标上的局部矩形特征为测量对象,首先,建立相对位姿测量模型并给出四个测量坐标系之间的关系;其次,通过相机对不完整矩形和线结构光的约束获得四个特征点在相机坐标系下的坐标;然后,利用四个特征点计算相机坐标系与目标坐标系之间的转移矩阵;最后,将转移矩阵分解得到矩形特征的相对位姿。通过改变影响测量精度的输入误差和标定误差等因素对该方法进行仿真验证,结果表明该测量方法是有效的。  相似文献   

16.
为满足“羲和”卫星在轨超高指向精度(优于5×10-4 (°))和超高姿态稳定度(5×10-4 (°)/s)要求,开展地面复杂环境下的磁浮机构高精度分离测试研究。分析地面测试的静态误差、动态误差和测量误差,以气浮系统变化、厂房环境和气浮平台精度为主要影响因素,试验验证了分析结果。提出了一种基于地面超静环境下的磁浮机构高精度分离测试方法,解决了传统测试方法难以满足卫星高精度分离测试的难题。  相似文献   

17.
田阳  宋新  王盈 《宇航学报》2019,40(8):948-956
针对空间目标三维重构任务中的相机参数设计问题,提出一套由目标重构精度反演观测相机参数及观测方案的方法。通过梳理三维重构误差传播机理,将误差传播归结为相机内参数影响特征点齐次坐标和齐次坐标影响重构精度两个过程,给出了三维重构误差计算方法。基于误差下限分析计算结果,给出了观测距离、拍照间隔与相机姿态指向等任务参数的设计原则,建立了由重构精度反演相机焦距和像素尺寸的方法,形成一套以重构精度为核心指标的观测方案和相机参数设计方法。针对模拟空间目标的仿真试验校验了重构误差估算算法及相机参数和观测方案设计方法的有效性。  相似文献   

18.
杨恪 《空间电子技术》2012,(2):37-39,69
自适应阵列天线使用空间谱估计中的多信号分类(MUSIC)算法估计信号到达角时,阵列天线物理特性的不一致直接影响到达角的估计精度。文章提出一种阵列通道校准方法,综合考虑阵元互耦、安装误差和通道失配,在引入辅助信号源的情况下,从实测来波方向中通过最优化的手段,来获取通道幅相补偿信息和信号到达角估计。通过计算机模拟实验,证明该方法是可行的。  相似文献   

19.
针对升降式光电探测平台的高精度目标定位要求,提出了一种基于多体系统理论的误差分析与建模方法.在系统总体结构的基础上,采用低序体阵列和齐次坐标变换矩阵,分别描述系统的拓扑结构和各坐标系之间的转换关系.同时,详细分析了各项误差因素的特性和产生机理,建立目标定位误差模型,并给出误差概率分布列表.Monte carlo仿真实验表明:影响定位精度的主要因素为轴系零位误差、光轴一致性误差、轴系垂直度误差、姿态测量组合和传递装置安装误差.外场实验表明:误差校准后,系统的最终测角精度优于0.07°.  相似文献   

20.
针对新型敏捷遥感卫星地面测试缺乏验证手段问题,文章提出一种针对敏捷机动成像过程的新型姿态控制精度评估方法,通过设计星地模型算法,根据卫星的定轨数据和高精度姿态数据计算,可得到星载相机成像点在地固坐标系(ECF)的坐标,并引入地表高程数据以提高计算精度,进行成像点位置精度评估,即姿态指向精度评估;通过计算地表镜下点运动速度等衍生参数,进行载荷成像质量评估。与同条件下地面任务规划数据比对,算法精度误差在10米量级,远小于卫星姿态指向误差导致的成像位置偏离,满足地面分析验证精度需求。该套算法已应用于遥感公用平台、某卫星姿态敏捷机动技术地面验证工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号