首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
一种宽频带圆极化微带天线的设计   总被引:2,自引:0,他引:2  
设计了一种宽频带圆极化微带天线。其结构为双层介质与空气层结合,辐射贴片为单个圆形金属片,通过电容耦合馈电的两个圆形金属片与威尔金森功分器相接,功分器的两个端口输出的功率幅度相同,相位相差90°。天线的3dB极化带宽为56%,VSWR<2的驻波比带宽为64%,增益在52%的带宽范围内变化在1dB以内。天线的远场方向图极化特性在35%的带宽范围内较好。  相似文献   

2.
设计并实现一种用于电子收费系统的四角缺元20单元微带天线阵列。天线阵采用道尔夫-切比雪夫分布,副瓣电平优于-20dB;采用三路功分器作为核心器件,与定向耦合器和威尔金森功分器组成一种新型串并联支路组合馈电网络,实现各端口不同比例功率分配,误差小于±0.5dB,各端口回损优于-15dB,隔离度优于18dB,相对带宽大于11%。样机测试结果与仿真值相吻合。馈电网络结构紧凑、灵活性强,适用于中等增益低副瓣平面阵列天线的馈电。  相似文献   

3.
文章提出了一种新型的非对称马刺狭孔结构,该结构具有可调控的双带隙特性,并提出基于LCR谐振器的该马刺狭孔的等效电路模型,建立了通过电磁仿真结果提取其电路参数的方程。采用RBF神经网络建模来辅助设计双带隙马刺狭孔,将该马刺狭孔用于Wilkinson功分器高次谐波的研究。实验结果证明,Wilkinson功分器的二次谐波和三次谐波分别降低27dB和34dB。该功分器在3.8GHz处反射系数为-3.5dB±0.3dB,在3.12GHz时为-3.7dB。  相似文献   

4.
介绍一种小型化Ku波段镜像抑制混频器设计方案,以单片无源双平衡混频器为基础,对主要关键电路射频正交耦合器、中频正交耦合器以及本振同相功分器进行电路优化设计及制作。在近1GHz的带宽内成功实现了镜像抑制大于20dB,插入损耗小于10dB,隔离度大于25dB的Ku波段无源镜像抑制混频器。实测结果表明,系统具有低损耗、高隔离度、高镜像抑制及高集成度的特点,在捷变频雷达、通信及遥测等系统中具有较好的应用前景。  相似文献   

5.
基于带状线结构的一体化阵列天线设计   总被引:1,自引:0,他引:1  
文章采用双面对称的辐射振子与1分20的Wilkinson功分器实现C波段一体化阵列天线设计。辐射振子及馈电网络设计为带状线结构。仿真及测试结果表明,在所要求的频段内,天线的输入驻波小于1.3,副瓣电平小于-26.5dB,满足了实际使用的要求。该设计思路和设计方法具有很好的扩展性。  相似文献   

6.
针对基于微波多层LTCC基板的带状线功分器输入端口存在的大高度差过渡问题,提出一种新型带状线到共面波导宽带同层过渡结构。在传统过渡模型基础上,引入高阻线及共面波导到带状线的交叉过渡形式,使得传输性能有所改善。仿真结果显示,在0GHz~40GHz范围内带状线到共面波导水平过渡的回波损耗小于–20d B,插入损耗小于0.2d B。应用过渡结构的带状线功分器性能指标满足要求,验证了过渡结构设计的可行性和有效性。  相似文献   

7.
设计一种应用于COMPASS/GPS双系统兼容接收机射频芯片的CMOS可变增益放大器。放大器电路的增益由可变跨导和可变输出负载共同实现,并通过指数电压转换电路实现电路增益与控制电压的dB线性变化特性。基于SMIC 0.18μm CMOS工艺库的仿真结果表明,在保证较小芯片面积及较低功耗的条件下,所设计的可变增益放大器实现了-95dB~32dB的宽动态范围增益控制。  相似文献   

8.
首先简要地介绍了可变波束形成网络的国外技术现状和发展;通过对国外两种方案的介绍,提出了我们的设计方案;最后介绍了波束形成网络中的关键部件——可变功分器的设计途径。  相似文献   

9.
针对八单元圆形顺序旋转阵列天线馈电网络结构复杂的问题,文章设计了一种宽带双圆极化馈电网络。首先,根据八单元圆形顺序旋转阵列天线的空间结构特点,分析了阵列馈电网络的幅度和相位关系;其次,分别设计了3dB分支线耦合器、威尔金森功分器、微带平面巴伦和移相器;最后,通过不断优化设计,构建了宽带双圆极化馈电网络。该网络由2个3dB分支线耦合器、2个威尔金森功分器、4个微带平面巴伦、2个45°移相器、2个90°移相器和1个180°移相器组成。测试结果表明:该网络在8.78GHz~11.12GHz的频带内,端口电压驻波小于1.72。8个输出端口的幅度起伏在 2.1dB以内,相位起伏在±7.8°以内。该馈电网络具备左旋和右旋圆极化馈电端口,具有频带宽、幅相特性良好和制作成本低等优点,完全满足八单元顺序旋转阵列天线馈电网络的要求。  相似文献   

10.
该文在ε_r=9.6的微波复合介质材料上设计和研制了一种工艺上易于实现的新型宽频带180°调制器。实验表明:在3.65—4.35GHz 频率范围内,其驻波比小于1.46,插入损耗小于1.1dB,幅度不平衡小于±0.30dB,相位不平衡小于±3.2°。  相似文献   

11.
S波段大型功分馈电网络设计   总被引:1,自引:0,他引:1  
为了满足某平面阵列天线高增益、低副瓣的要求,设计了工作在S波段、相对带宽为10%的1—48的大型功分馈电网络。该馈电网络采用带状线功分器与微带线功分器级联而成。利用HFSS、Ansoft Designer等电磁软件对其进行仿真设计。实测结果表明在所要求的频段内,网络的输入驻波小于1.50,相位误差小于10°。  相似文献   

12.
文章设计了一种基于微带和共面带状线转换结构的宽带平面巴伦。该平面巴伦由3节威尔金森功分器和宽带180°移相器构成。首先,根据威尔金森功分器的设计方法,结合市场上电阻的标称值,优化设计了3节宽带威尔金森功分器。其次,基于微带和共面带状线结构设计了宽带的移相器,最后,将宽带移相器加载在3节威尔金森功分器的输出端口,构建了宽带平面巴伦结构。对设计的平面巴伦进行了制作和测试,测试结果表明,该宽带平面巴伦在2.16~6.04GHz频带内,相位不平衡度小于2.8°,在1.13~6.01GHz的频带内,幅度不平衡度小于0.6d B。  相似文献   

13.
给出了具有良好宽角扫描特性的FFOC和SFOC天线的参数综合设计公式;分析计算了两个能满足全球扫描要求的SFOC和FFOC天线设计实例,计算表明,SFOC设计实例在±10((±15BW)扫描范围内不仅增益损失小于1dB,FFOC设计实例也在±8((±12BW)扫描范围内增益损失小于1dB,且二者旁瓣电平都优于20dB。对于全球扫描要求,FFOC和SFOC天线都是很有吸引力的设计方案。  相似文献   

14.
文章采用TERATECH公司研制的肖特基二极管,设计了一种星载183GHz分谐波混频器。长9mm、宽0.42mm的混频器电路被放置在腔体中,包括波导过渡到微带的本振和射频频率匹配部分。仿真结果表明本振功率仅为3mw时,变频损耗在173GHz~193GHz频率范围内小于9dB,变频损耗幅度平坦度小于1dB。  相似文献   

15.
叙述了一种可用于星载微波接收机的14/12GHz谐波混频器的原理、设计、仿真及实验结果。该混频器主要由Lange耦合器、输入、输出滤波器以及匹配网络等部分组成。在14.00~14.25GHz的频率范围内变频增益为-16.52dB,带内平坦度优于1dB,驻波比小于2。  相似文献   

16.
提出一种新型的圆极化全向天线,其仿真在12%的频带宽度内电压驻波比小于2,中心频率的水平面全向辐射圆极化增益起伏小于0.25dB,圆极化轴比小于4.2dB,增益大于1.3dB。测试结果表明,在39%的频带宽度内电压驻波比小于2,中心频率的水平面全向辐射圆极化增益起伏小于0.4dB,圆极化轴比小于6.5dB,比较容易组阵。这种天线在个人通信系统和地面控制系统中有较强的实用价值。  相似文献   

17.
一种新颖的数字移相电路   总被引:2,自引:0,他引:2  
介绍了一种新颖的数字移相电路。通过采用这种矢量合成电路结构 ,很好地解决了多个级间的匹配问题。利用这种电路实现的 4bit数字移相器 ,其移相精度小于 2° ,相位平坦度在 1 0 0MHz范围内小于 9°,插损小于 7dB ,驻波小于 1 .6。  相似文献   

18.
介绍了一种纵向长度100mm、工作于4/6GHz的波导型正交模耦合器。利用Ansoft公司的Eminence软件仿真计算结果表明,在3.7GHz~4.2GHz、5.925~6.425GHz频段范围内,驻波小于1.2,两通道隔离度大干50dB。  相似文献   

19.
基于SMIC 0.181μm CMOS工艺,设计一款可用于1GHz~2GHz射频接收机前端的低噪声放大器。放大器利用共栅结构实现输入阻抗匹配,采用噪声抵消技术实现低噪声,核心电路尺寸为600μm×650μm。仿真结果表明,在1GHz~2GHz频率范围内,输入反射系数小于-10dB,噪声系数低于3.63dB,输入1dB压缩点在1.414GHz为-6.93dBm,在1.8V电源电压下,主体电路的功耗为18.8mW。  相似文献   

20.
对W波段鳍线过渡进行分析,设计并制作采用Spline曲线形式的鳍线过渡。在整个W波段,单个过渡结构插入损耗小于1.6dB,回波损耗小于-12dB,实现了良好的宽带性能。基于该鳍线过渡,设计一种W波段低噪声放大器,芯片选用MMIC单片CGY2190UH,整机在80GHz~100GHz之间增益大于20dB,平坦度小于3dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号